Lecture 3.7: Tensors

Matthew Macauley

School of Mathematical \& Statistical Sciences Clemson University
 http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

What does a tensor product represent?

Consider two vector spaces U, V over K, and say $\operatorname{dim} U=n$ and $\operatorname{dim} V=m$. Then
$U \cong\left\{a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \mid a_{i} \in K\right\}, \quad V \cong\left\{b_{m-1} y^{m-1}+\cdots+b_{1} x+b_{0} \mid b_{i} \in K\right\}$.
The direct product $U \times V$ has basis

$$
\left\{\left(x^{n-1}, 0\right), \ldots,(x, 0),(1,0)\right\} \cup\left\{\left(0, y^{m-1}\right), \ldots,(0, y),(0,1)\right\}
$$

An arbitrary element has the form

$$
\left(a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}, b_{m-1} y^{m-1}+\cdots+b_{1} y+b_{0}\right) \in U \times V
$$

Notice that $\left(3 x^{i}, y^{j}\right) \neq\left(x^{i}, 3 y^{j}\right)$ in $U \times V$.
There is another way to "multiply" the vector spaces U and V together. It is easy to check that the following is a vector space:

$$
\left\{\sum_{j=0}^{m-1} \sum_{i=0}^{n-1} c_{i j} x^{i} y^{j} \mid c_{i j} \in K\right\}
$$

This is the idea of the tensor product, denoted $U \otimes V$.
Formalizing this is a bit delicate. For example, $3 x^{i} \cdot y^{j}=x^{i} \cdot\left(3 y^{j}\right)=3\left(x^{i} \cdot y^{j}\right)$.

The tensor product in terms of bases

Though we are normally not allowed to "multiply" vectors, we can define it by inventing a special symbol.

Denote the formal "product" of two vectors $u \in U$ and $v \in V$ as $u \otimes v$.
Pick bases u_{1}, \ldots, u_{n} for U and v_{1}, \ldots, v_{m} for V.

Definition

The tensor product of U and V is the vector space with basis $\left\{u_{i} \otimes v_{j}\right\}$.

By definition, every element of $U \otimes V$ can be written uniquely as

$$
\sum_{j=1}^{m} \sum_{i=1}^{n} c_{i j}\left(u_{i} \otimes v_{j}\right)
$$

It is immediate that $\operatorname{dim}(U \otimes V)=(\operatorname{dim} U)(\operatorname{dim} V)$.

Remark

Not every multivariate polynomial in x and y factors as a product $p(x) q(y)$.
Not every element in $U \otimes V$ can be written as $u \otimes v$ - called a pure tensor.

A basis-free construction of the tensor product

Given vector spaces U and V, let $F_{U \times V}$ be the vector space with basis $U \times V$:

$$
F_{U \times V}=\left\{\sum c_{u v} e_{u, v} \quad \mid \quad u \in U, v \in V\right\} .
$$

For all $u, u^{\prime} \in U$ and $v, v^{\prime} \in V$, we "need" the following to hold:

$$
e_{u+u^{\prime}, v}=e_{u, v}+e_{u^{\prime}, v} \quad e_{u, v+v^{\prime}}=e_{u, v}+e_{u, v^{\prime}} \quad e_{c u, v}=c e_{u, v} \quad e_{u, c v}=c e_{u, v} .
$$

Consider the set of "null sums" from $F_{U \times V}$:

$$
\begin{aligned}
S= & {\left[\bigcup_{\substack{u, u^{\prime} \in U \\
v \in V}} e_{u+u^{\prime}, v}-e_{u, v}-e_{u^{\prime}, v}\right] \cup\left[\bigcup_{\substack{u \in U \\
v, v^{\prime} \in V}} e_{u, v+v^{\prime}}-e_{u, v}-e_{u, v^{\prime}}\right] } \\
& \cup\left[\bigcup_{\substack{u \in U, v \in V \\
c \in K}} e_{c u, v}-c e_{u, v}\right] \cup\left[\bigcup_{\substack{u \in U, v \in V \\
c \in K}} e_{u, c v}-c e_{u, v}\right] .
\end{aligned}
$$

Let $N_{q}=\operatorname{Span}(S)$. Denote the equivalence class of $e_{u, v} \bmod N_{q}$ as $u \otimes v$.

Definition

The tensor product of U and V is the quotient space $U \otimes V:=F_{U \times V} / N_{q}$.

Why this basis-free construction works

Let W be a vector space with basis $\left\{w_{i j} \mid 1 \leq i \leq n, 1 \leq j \leq m\right\}$. Define the linear map

$$
\alpha: W \longrightarrow U \otimes V, \quad \alpha: w_{i j} \longmapsto u_{i} \otimes v_{j} .
$$

We'd like to define the (inverse) map $\beta: U \otimes V \rightarrow W$, but to do so, we need a basis for $U \otimes V$. What we can do is define a map

$$
\tilde{\beta}: F_{U \times V} \longrightarrow W, \quad \tilde{\beta}: e_{\Sigma a_{i} u_{i}, \Sigma b_{j} v_{j}} \longmapsto \sum_{i, j} a_{i} b_{j} w_{i j} .
$$

Remark (exercise)

The nullspace of $\tilde{\beta}$ contains the nullspace of q.

Since $N_{q} \subseteq N_{\tilde{\beta}}$, the map $\tilde{\beta}$ factors through $F_{U \times V} / N_{q}:=U \otimes V$:

The maps α and β are inverses because $\alpha \circ \beta=\operatorname{ld}_{U \otimes V}$ and $\beta \circ \alpha=\mathrm{Id}_{W}$.

Universal property of the tensor product

Let $\tau: U \times V \rightarrow U \otimes V$ be the map $(u, v) \mapsto u \otimes v$.
The following says that every bilinear map from $U \times V$ can be "factored through" $U \otimes V$.

Theorem 3.14

For every bilinear $\beta: U \times V \rightarrow X$, there is a unique linear $L: U \otimes V \rightarrow X$ such that $\beta=L \circ \tau$.

The universal property can provide us with alternate proofs of some basic results, such as:
(i) $\left\{u_{i} \otimes v_{j}\right\}$ is linearly independent
(ii) $U \otimes V \cong V \otimes U$
(iii) $(U \otimes V) \otimes W \cong U \otimes(V \otimes W)$
(iv) $(U \times V) \otimes W \cong(U \otimes W) \times(V \otimes W)$.

Tensors as linear maps

Proposition 3.15

There is a natural isomorphism

$$
U \otimes V \longrightarrow \operatorname{Hom}\left(U^{\prime}, V\right), \quad u \otimes v \longmapsto(\ell \mapsto(\ell, u) v)
$$

The following shows the linear map $\ell \stackrel{E_{i j}}{\longmapsto}\left(\ell, u_{i}\right) v_{j}$ in matrix form:

$$
\underbrace{\left[\begin{array}{lllll}
c_{1} & \cdots & c_{i} & \cdots & c_{n}
\end{array}\right]}_{\ell=\sum c_{i} \ell_{i} \in U^{\prime}} \underbrace{\left[\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & & 1 & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right]}_{E_{i j}:=v_{j}^{T} u_{i}}=\underbrace{\left[\begin{array}{llll}
0 & \cdots & c_{i} & \cdots
\end{array}\right.}_{c_{i} v_{j} \in V} \begin{array}{l}
0
\end{array}]
$$

More generally:

$$
\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right] \otimes\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{m}
\end{array}\right]=v u^{T}=\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{m}
\end{array}\right]\left[\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{n}
\end{array}\right]=\left[\begin{array}{cccc}
v_{1} u_{1} & v_{1} u_{2} & \cdots & v_{1} u_{n} \\
v_{2} u_{1} & v_{2} u_{2} & \cdots & v_{2} u_{n} \\
\vdots & \vdots & \ddots & \vdots \\
v_{m} u_{1} & v_{m} u_{2} & \cdots & v_{m} u_{n}
\end{array}\right]
$$

Tensors as a way to extend an \mathbb{R}-vector space to a \mathbb{C}-vector space

Let X be an \mathbb{R}-vector space with basis $\left\{x_{1}, \ldots, x_{n}\right\}$.
Note that \mathbb{C} is a 2-dimensional \mathbb{R}-vector space, with basis $\{1, i\}$.
Suppose $A: X \rightarrow X$ is a linear map with eigenvalues $\lambda_{1,2}= \pm i$.
If v is an eigenvector v for $\lambda=i$, then $v \notin X$. But v should live in some "extension" of X.
In this bigger vector space, we want to have vectors like

$$
z v, \quad z \in \mathbb{C}, \quad v \in X
$$

What we really want is $\mathbb{C} \otimes X$, which has basis

$$
\left\{1 \otimes x_{1}, \ldots, 1 \otimes x_{n}, i \otimes x_{1}, \ldots, i \otimes x_{n}\right\} "="\left\{x_{1}, \ldots, x_{n}, i x_{1}, \ldots, i x_{n}\right\} .
$$

Notice how the associativity that we would expect comes for free with the tensor product, and compare it to the other examples from this lecture:

$$
(3 i) v=i(3 v), \quad\left(3 x^{i}\right) y^{j}=x^{i}\left(3 y^{j}\right), \quad(3 u) v^{T}=u\left(3 v^{T}\right), \quad 3 u \otimes v=u \otimes 3 v .
$$

