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What does a tensor product represent?

Consider two vector spaces U,V over K , and say dimU = n and dimV = m. Then

U ∼=
{
an−1x

n−1 + · · ·+ a1x + a0 | ai ∈ K
}
, V ∼=

{
bm−1y

m−1 + · · ·+b1x +b0 | bi ∈ K
}
.

The direct product U × V has basis{
(xn−1, 0), . . . , (x , 0), (1, 0)

}
∪
{

(0, ym−1), . . . , (0, y), (0, 1)
}
.

An arbitrary element has the form(
an−1x

n−1 + · · ·+ a1x + a0, bm−1y
m−1 + · · ·+ b1y + b0

)
∈ U × V .

Notice that (3x i , y j ) 6= (x i , 3y j ) in U × V .

There is another way to “multiply” the vector spaces U and V together. It is easy to check
that the following is a vector space:

m−1∑
j=0

n−1∑
i=0

cijx
iy j | cij ∈ K

 .

This is the idea of the tensor product, denoted U ⊗ V .

Formalizing this is a bit delicate. For example, 3x i · y j = x i · (3y j ) = 3(x i · y j ).

M. Macauley (Clemson) Lecture 3.7: Tensors Math 8530, Advanced Linear Algebra 2 / 8

mailto:macaule@clemson.edu


The tensor product in terms of bases

Though we are normally not allowed to “multiply” vectors, we can define it by inventing a
special symbol.

Denote the formal “product” of two vectors u ∈ U and v ∈ V as u ⊗ v .

Pick bases u1, . . . , un for U and v1, . . . , vm for V .

Definition

The tensor product of U and V is the vector space with basis {ui ⊗ vj}.

By definition, every element of U ⊗ V can be written uniquely as

m∑
j=1

n∑
i=1

cij (ui ⊗ vj ).

It is immediate that dim(U ⊗ V ) = (dimU)(dimV ).

Remark

Not every multivariate polynomial in x and y factors as a product p(x)q(y).

Not every element in U ⊗ V can be written as u ⊗ v – called a pure tensor.
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A basis-free construction of the tensor product

Given vector spaces U and V , let FU×V be the vector space with basis U × V :

FU×V =
{∑

cuv eu,v | u ∈ U, v ∈ V
}
.

For all u, u′ ∈ U and v , v ′ ∈ V , we “need” the following to hold:

eu+u′,v = eu,v + eu′,v eu,v+v′ = eu,v + eu,v′ ecu,v = ceu,v eu,cv = ceu,v .

Consider the set of “null sums” from FU×V :

S =

[ ⋃
u,u′∈U
v∈V

eu+u′,v − eu,v − eu′,v

]
∪
[ ⋃

u∈U
v,v′∈V

eu,v+v′ − eu,v − eu,v′

]

∪
[ ⋃
u∈U,v∈V

c∈K

ecu,v − ceu,v

]
∪
[ ⋃
u∈U,v∈V

c∈K

eu,cv − ceu,v

]
.

Let Nq = Span(S). Denote the equivalence class of eu,v mod Nq as u ⊗ v .

Definition

The tensor product of U and V is the quotient space U ⊗ V := FU×V /Nq .
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Why this basis-free construction works

Let W be a vector space with basis
{
wij | 1 ≤ i ≤ n, 1 ≤ j ≤ m

}
. Define the linear map

α : W −→ U ⊗ V , α : wij 7−→ ui ⊗ vj .

We’d like to define the (inverse) map β : U ⊗ V →W , but to do so, we need a basis for
U ⊗ V . What we can do is define a map

β̃ : FU×V −→W , β̃ : eΣai ui ,Σbj vj 7−→
∑
i,j

aibjwij .

Remark (exercise)

The nullspace of β̃ contains the nullspace of q.

Since Nq ⊆ Nβ̃ , the map β̃ factors through FU×V /Nq := U ⊗ V :

FU×V
β̃ //

q
%%

W

FU×V /Nq

β

;; eΣai ui ,Σbj vj
� β̃ //

�

q
''

∑
aibjwij

∑
aiui ⊗

∑
bjvj

0 β

77

The maps α and β are inverses because α ◦ β = IdU⊗V and β ◦ α = IdW .

M. Macauley (Clemson) Lecture 3.7: Tensors Math 8530, Advanced Linear Algebra 5 / 8

mailto:macaule@clemson.edu


Universal property of the tensor product

Let τ : U × V → U ⊗ V be the map (u, v) 7→ u ⊗ v .

The following says that every bilinear map from U × V can be “factored through” U ⊗ V .

Theorem 3.14

For every bilinear β : U×V → X , there is a unique linear L : U⊗V → X such that β = L◦ τ .

U × V
β //

τ
$$

X

U ⊗ V

L

<<

The universal property can provide us with alternate proofs of some basic results, such as:

(i) {ui ⊗ vj} is linearly independent

(ii) U ⊗ V ∼= V ⊗ U

(iii) (U ⊗ V )⊗W ∼= U ⊗ (V ⊗W )

(iv) (U × V )⊗W ∼= (U ⊗W )× (V ⊗W ).
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Tensors as linear maps

Proposition 3.15

There is a natural isomorphism

U ⊗ V −→ Hom(U′,V ), u ⊗ v 7−→
(
` 7→ (`, u)v

)
.

The following shows the linear map `
Eij7−→ (`, ui )vj in matrix form:

[
c1 · · · ci · · · cn

]︸ ︷︷ ︸
`=

∑
ci `i∈U′



0 0 · · · 0
0 0 · · · 0
... 1

...
...

...
. . .

...
0 0 · · · 0


︸ ︷︷ ︸

Eij :=vTj ui

=
[
0 · · · ci · · · 0

]︸ ︷︷ ︸
ci vj∈V

More generally:
u1

u2

...
un

⊗
v1

...
vm

 = vuT =

v1

...
vm

 [u1 u2 · · · un
]

=


v1u1 v1u2 · · · v1un
v2u1 v2u2 · · · v2un

...
...

. . .
...

vmu1 vmu2 · · · vmun


M. Macauley (Clemson) Lecture 3.7: Tensors Math 8530, Advanced Linear Algebra 7 / 8

mailto:macaule@clemson.edu


Tensors as a way to extend an R-vector space to a C-vector space

Let X be an R-vector space with basis {x1, . . . , xn}.

Note that C is a 2-dimensional R-vector space, with basis {1, i}.

Suppose A : X → X is a linear map with eigenvalues λ1,2 = ±i .

If v is an eigenvector v for λ = i , then v 6∈ X . But v should live in some “extension” of X .

In this bigger vector space, we want to have vectors like

zv , z ∈ C, v ∈ X .

What we really want is C⊗ X , which has basis{
1⊗ x1, . . . , 1⊗ xn, i ⊗ x1, . . . , i ⊗ xn

}
“=”

{
x1, . . . , xn, ix1, . . . , ixn

}
.

Notice how the associativity that we would expect comes for free with the tensor product,
and compare it to the other examples from this lecture:

(3i)v = i(3v), (3x i )y j = x i (3y j ), (3u)vT = u(3vT ), 3u ⊗ v = u ⊗ 3v .
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