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What does a tensor product represent?
Consider two vector spaces U, V over K, and say dim U = n and dim V = m. Then
U= {a,,,lx"_l +--4aixtao|a€ K}, = {bmfly"’_l—l—----l—blx—l-bo | b; € K}.
The direct product U x V has basis
{(x"71,0), 1, (x,0), (1,0} U {(0,y™ 1), ..., (0,), (0, 1)}
An arbitrary element has the form
(an—1x"1 4+ +a1x + a0, bm_1y™ t 4+ by + by) € Ux V.
Notice that (3x',y/) # (x/,3y/) in U x V.

There is another way to “multiply” the vector spaces U and V together. It is easy to check
that the following is a vector space:

m—1n—1 o
Z Zc,-jx‘yf | cj e K
j=0 i=0

This is the idea of the tensor product, denoted U ® V.

Formalizing this is a bit delicate. For example, 3x" - yJ = x' - (3yd) = 3(x' - y¥).
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The tensor product in terms of bases

Though we are normally not allowed to “multiply” vectors, we can define it by inventing a
special symbol.

Denote the formal “product” of two vectors u € U and v € V as u® v.

Pick bases u1,...,u, for U and vy, ..., vy, for V.
Definition
The tensor product of U and V is the vector space with basis {u; ® v;}. J

By definition, every element of U ® V can be written uniquely as

n

s

cij(ui ® vj).
1i=1

J
It is immediate that dim(U ® V) = (dim U)(dim V).
Remark

Not every multivariate polynomial in x and y factors as a product p(x)q(y).

Not every element in U ® V can be written as u ® v — called a pure tensor.
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A basis-free construction of the tensor product

Given vector spaces U and V/, let Fyx\ be the vector space with basis U X V:

FUXV:{ZCuveu,v | ue U, VEV}.

For all u,u’ € U and v,v' € V, we “need” the following to hold:
€utu’,v = €uyv T €y y €uvtv/ = €uyv T €y

Consider the set of “null sums’ from Fyyy:

5:[ U eu_*_u/,vfeu,vfeu/,v}u{ U eu,v+v/

u,u’ €U uey
vEV v, ev
U|: U €cu,v — Ceu,v:| U |: U €u,cv
uel,veV uel,veV
ceK ceK

€cu,v = Céy,v

€u,cv = Cey,v.

— €u,v — euy‘/}

— ceu,v} .

Let Ny = Span(S). Denote the equivalence class of e,y mod Ny as u® v.

Definition

The tensor product of U and V is the quotient space U ® V := Fyxv/Ng.
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Why this basis-free construction works
Let W be a vector space with basis {w,-j [1<i<n 1<j< m}. Define the linear map
aW—URV, a: wij — Ui Q V.

We'd like to define the (inverse) map 3: U® V — W, but to do so, we need a basis for
U ® V. What we can do is define a map

,3: FU><V — W, ﬁ: e:aiuiiijj — E a,-bjw,-j.
ij

The nullspace of 3 contains the nullspace of q.

Remark (exercise) J

Since Ng C N[;, the map 5’ factors through Fyxy/Ng = UQ V:

™

B
Fuxv w €5au;,5bjv; b > ajbjw;
-

7
- ~
e ~
-
\ ///3 \ _ B

v
Fuxv/Ng 2oaiui ® 3objv;

The maps a and f3 are inverses because a o f = ldygy and Soa = Idy.
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Universal property of the tensor product
Let 7: UX V — U® V be the map (u,v) — u® v.

The following says that every bilinear map from U x V can be “factored through” U ® V.

Theorem 3.14
For every bilinear 8: U X V — X, there is a unique linear L: U® V — X such that 3 = Lor.

The universal property can provide us with alternate proofs of some basic results, such as:
(i) {ui ® v;} is linearly independent

(iHhueveveU

(i) (U V)eW2UR (Ve W)

(iv) (UxV)eW=2(UW)x(VeW).
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Tensors as linear maps

Proposition 3.15

There is a natural isomorphism

U® V — Hom(U', V), U v i— (Zr—}(é,u)v).

Ejj . .
The following shows the linear map ¢ +—% (¢, u;)v; in matrix form:

0O 0 --- 0
00 --- 0
[c1 cee G e c,,} : 1 . :[0 ci - 0}
=" it eV’ oo Gvev
0 0 -0
| S —
E,-j::vau,-
More generally:
u viu ViU S oviu
1 v v 1U1 1U2 1Un
u2 vaup voup - Vaup
® . = vuT = : [ul up un| =
Vm Vm '

Un VmUl  VmU2 -++  Vmlp
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Tensors as a way to extend an R-vector space to a C-vector space
Let X be an R-vector space with basis {x1,...,xn}.
Note that C is a 2-dimensional R-vector space, with basis {1, i}.
Suppose A: X — X is a linear map with eigenvalues \; » = +i.
If v is an eigenvector v for A = i, then v € X. But v should live in some “extension” of X.
In this bigger vector space, we want to have vectors like
zv, zeC, velX.

What we really want is C ® X, which has basis

{1®x1,...,1®x,,,i®x1,...,i®x,,} H=" {xl,...,x,,,ixl,...,ixn}.

Notice how the associativity that we would expect comes for free with the tensor product,
and compare it to the other examples from this lecture:

(3i)v =i(3v), (3x")y! = xI(3y7), BuvT =u@3vT), 3uQv=u®3v.
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