Lecture 4.1: Eigenvalues and eigenvectors

Matthew Macauley

School of Mathematical \& Statistical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

Assumptions and definitions

Throughout, we will assume that A is an $n \times n$ matrix over K. Thus, it represents an endomorphism of a vector space $X \cong K^{n}$.

We will assume that K is algebraically closed, which means that every non-constant polynomial has a root in K.

The most common algebraically closed field is $K=\mathbb{C}$.

Definition

If $A v=\lambda v$ for some nonzero vector v and scalar $\lambda \in K$, then v is an eigenvector and λ is an eigenvalue.

Existence of eigenvectors

Proposition 4.1

A has an eigenvector.

An example

Remark

$A-\lambda I$ is noninvertible iff $\operatorname{det}(A-\lambda I)=0$. That is, λ is an eigenvalue of A iff $\operatorname{det}(A-\lambda I)=0$, and the corresponding eigenvector is any $v \neq 0$ in $N_{A-\lambda I}$.

Let's compute the eigenvalues and eigenvectors of $A=\left[\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right]$.

Linear independence of eigenvectors

Proposition 4.2

Eigenvectors of A corresponding to distinct eigenvalues are linearly independent.

Diagonalizability

Proposition 4.3

If X has a basis of eigenvectors of A, then A is similar to a diagonal matrix. We say that A is diagonalizable.

