Lecture 4.3: Generalized eigenvectors

Matthew Macauley

School of Mathematical \& Statistical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

Definitions

Throughout, $A: X \rightarrow X$ will be an $n \times n$ matrix over an algebraically closed field K.
Let I be the set of polynomials

$$
I=\{p(t) \in \mathbb{C}[t] \mid p(A)=0\}
$$

This is an ideal of $\mathbb{C}[t]$ since it's closed under addition, subtraction, and scalar multiplication.
Since $\mathbb{C}[t]$ is a principal ideal domain (PID), I is generated by a single element.
That is, $I=\left\langle m_{A}(t)\right\rangle$, for some monic polynomial $m_{A}(t)$, called the minimal polynomial of A.
All polynomials $p(t)$ such that $p(A)=0$ are multiples of $m_{A}(t)$.
Let's verify existence and uniqueness of $m_{A}(t)$ without using ring theoretic ideas.

2×2 examples

Examples

1. $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
2. $A=\left[\begin{array}{cc}3 & 2 \\ -2 & -1\end{array}\right]$

Remark

Every 2×2 matrix with $\operatorname{tr} A=2$ and $\operatorname{det} A=1$ has $\lambda=1$ as a double root of $p_{A}(t)$. These matrices form a 2-parameter family of $p_{A}(t)$, and only $A=I$ has two linearly independent eigenvectors.

3×3 examples

Suppose A is a 3×3 matrix and $p_{A}(t)=(t-1)^{3}$. Since $m_{A}(t)$ divides $p_{A}(t)$, there are three possibilities:

1. $m_{A}(t)=t-1$
2. $m_{A}(t)=(t-1)^{2}$
3. $m_{A}(t)=(t-1)^{3}$.

Generalized eigenvectors

Suppose λ is an eigenvalue with multiplicity m, but only one eigenvector $v \in X$. Then

$$
(A-\lambda I) v_{1}=0, \quad \operatorname{dim} N_{A-\lambda I}=1, \quad \operatorname{rank}(A-\lambda I)=m-1 .
$$

Big idea

We can always find some $v_{2} \in X$ such that

$$
(A-\lambda I) v_{2}=v_{1}, \quad \Longrightarrow \quad(A-\lambda I)^{2} v_{2}=0
$$

Similarly, we can find $v_{3} \in X$ such that

$$
(A-\lambda I) v_{3}=v_{2}, \quad \Longrightarrow \quad(A-\lambda I)^{3} v_{3}=0, \quad \text { but } \quad(A-\lambda I)^{2} v_{3}=v_{1} \neq 0
$$

Definition

A vector $v \in X$ is a generalized eigenvector of A with eigenvalue λ if $(A-\lambda I)^{m} v=0$ for some $m \geq 1$. The "genuine" eigenvectors are when $m=1$.

2×2 examples, revisited

Examples

1. $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
2. $A=\left[\begin{array}{cc}3 & 2 \\ -2 & -1\end{array}\right]$
