Lecture 4.4: Invariant subspaces

Matthew Macauley

Math 8530, Advanced Linear Algebra

Invariant subspaces and block diagonal matrices

Throughout, X is an n-dimensional vector space over an algebraically closed field K.

Definition

An invariant subspace of $A: X \to X$ is any $Y \leq X$ for which $A(Y) \subseteq Y$.

Suppose $X = Y \oplus Z$, both *A*-invariant.

If y_1, \ldots, y_k and z_{k+1}, \ldots, z_n are bases for Y and Z, then the matrix of A with respect to

 $y_1,\ldots,y_k,z_{k+1},\ldots,z_n$

is block-diagonal. It is easy to see how this extends to a sum of A-invariant subspaces,

 $X = Y_1 \oplus \cdots \oplus Y_\ell$.

Suppose we have a collection v_1, \ldots, v_m of generalized eigenvectors:

 $v_{m-1} = (A - \lambda I)v_m, \quad v_{m-2} = (A - \lambda I)^2 v_m, \quad \dots, \quad v_2 = (A - \lambda I)^{m-2} v_m, \quad v_1 = (A - \lambda I)^{m-1} v_m.$

Notice that $Y = \text{Span}(v_1, \ldots, v_m)$ is invariant under both $(A - \lambda I)$ and A.

In this lecture, we will explore what happens when we have multiple genuine eigenvectors, and the invariant subspaces that arise.

M. Macauley (Clemson)

An 11×11 example

Suppose A: $X \to X$ has characteristic polynomial $p_A(t) = (t - \lambda)^{11}$, and dim $N_{A-\lambda I} = 4$. Here is one such possibility for the generalized eigenvectors:

$$v_{5} \xrightarrow{A-\lambda I} v_{4} \xrightarrow{A-\lambda I} v_{3} \xrightarrow{A-\lambda I} v_{2} \xrightarrow{A-\lambda I} v_{1} \xrightarrow{A-\lambda I} 0$$

$$w_{3} \xrightarrow{A-\lambda I} w_{2} \xrightarrow{A-\lambda I} w_{1} \xrightarrow{A-\lambda I} 0$$

$$x_{2} \xrightarrow{A-\lambda I} x_{1} \xrightarrow{A-\lambda I} 0$$

$$y_1 \xrightarrow{A-\lambda I} 0$$

What invariant subspaces do you see?

Let
$$N_j := N_{(A - \lambda I)^j}$$
. Notice that
 $\cdots = N_6 = N_5 \supseteq N_4 \supseteq N_3 \supseteq N_2 \supseteq N_1 \supseteq 0.$

The anatomy of an eigenvalue

Key idea

For any A: $X \rightarrow X$, there is always a basis of generalized eigenvectors of A.

Definition & preview

The algebraic multiplicity of λ is:

- the largest k such that $(t \lambda)^k$ is a factor of $p_A(t)$
- the maximum number of linearly independent generalized λ -eigenvectors of A
- \blacksquare the number of diagonal entries of λ in the Jordan canonical form.

The geometric multiplicity of λ is:

- dim $N_{A-\lambda I}$
- the maximum number of linearly independent genuine λ -eigenvectors of A
- the number of Jordan blocks corresponding to λ .

The index of λ is:

- the smallest d such that $N_d = N_{d+1}$
- the "length of the longest chain" of generalized eigenvectors
- the largest m such that $(t \lambda)^m$ is a factor of $m_A(t)$
- the size of the largest Jordan block corresponding to λ .

A key technical lemma

Lemma 4.7 (HW exercise)

The map $A - \lambda I$ is a well-defined injective map on quotient spaces:

$$A - \lambda I : N_{j+1}/N_j \longrightarrow N_j/N_{j-1}, \qquad A - \lambda I : \bar{x} \longmapsto \overline{(A - \lambda I)x}$$

Therefore, $\dim(N_{j+1}/N_j) \leq \dim(N_j/N_{j-1})$.

$$v_5 \xrightarrow{A-\lambda I} v_4 \xrightarrow{A-\lambda I} v_3 \xrightarrow{A-\lambda I} v_2 \xrightarrow{A-\lambda I} v_1 \xrightarrow{A-\lambda I} 0$$

$$w_3 \xrightarrow{A-\lambda I} w_2 \xrightarrow{A-\lambda I} w_1 \xrightarrow{A-\lambda I} 0$$

$$x_2 \xrightarrow{A-\lambda I} x_1 \xrightarrow{A-\lambda I} 0$$

$$y_1 \xrightarrow{A-\lambda I} 0$$

$$\cdots = N_6 = N_5 \supseteq N_4 \supseteq N_3 \supseteq N_2 \supseteq N_1 \supseteq 0.$$