Lecture 4.4: Invariant subspaces

Matthew Macauley

School of Mathematical \& Statistical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

Invariant subspaces and block diagonal matrices

Throughout, X is an n-dimensional vector space over an algebraically closed field K.

Definition

An invariant subspace of $A: X \rightarrow X$ is any $Y \leq X$ for which $A(Y) \subseteq Y$.

Suppose $X=Y \oplus Z$, both A-invariant.
If y_{1}, \ldots, y_{k} and z_{k+1}, \ldots, z_{n} are bases for Y and Z, then the matrix of A with respect to

$$
y_{1}, \ldots, y_{k}, z_{k+1}, \ldots, z_{n}
$$

is block-diagonal. It is easy to see how this extends to a sum of A-invariant subspaces,

$$
X=Y_{1} \oplus \cdots \oplus Y_{\ell}
$$

Suppose we have a collection v_{1}, \ldots, v_{m} of generalized eigenvectors:
$v_{m-1}=(A-\lambda I) v_{m}, \quad v_{m-2}=(A-\lambda I)^{2} v_{m}, \ldots, \quad v_{2}=(A-\lambda I)^{m-2} v_{m}, \quad v_{1}=(A-\lambda I)^{m-1} v_{m}$.
Notice that $Y=\operatorname{Span}\left(v_{1}, \ldots, v_{m}\right)$ is invariant under both $(A-\lambda I)$ and A.
In this lecture, we will explore what happens when we have multiple genuine eigenvectors, and the invariant subspaces that arise.

An 11×11 example

Suppose $A: X \rightarrow X$ has characteristic polynomial $p_{A}(t)=(t-\lambda)^{11}$, and $\operatorname{dim} N_{A-\lambda I}=4$.
Here is one such possibility for the generalized eigenvectors:
$V_{5} \longmapsto \stackrel{A-\lambda I}{\longmapsto} v_{4} \stackrel{A-\lambda I}{\longmapsto} v_{3} \stackrel{A-\lambda I}{\longrightarrow} V_{2} \stackrel{A-\lambda I}{\longmapsto} v_{1} \stackrel{A-\lambda I}{ }$

$$
w_{3} \stackrel{A-\lambda I}{\longmapsto} w_{2} \stackrel{A-\lambda I}{\longmapsto} w_{1} \stackrel{A-\lambda I}{ } 0
$$

$y_{1} \stackrel{A-\lambda I}{\longmapsto} 0$

What invariant subspaces do you see?
Let $N_{j}:=N_{(A-\lambda /)^{j}}$. Notice that

$$
\cdots=N_{6}=N_{5} \supsetneq N_{4} \supsetneq N_{3} \supsetneq N_{2} \supsetneq N_{1} \supsetneq 0 .
$$

The anatomy of an eigenvalue

Key idea

For any $A: X \rightarrow X$, there is always a basis of generalized eigenvectors of A.

Definition \& preview

The algebraic multiplicity of λ is:

- the largest k such that $(t-\lambda)^{k}$ is a factor of $p_{A}(t)$

■ the maximum number of linearly independent generalized λ-eigenvectors of A

- the number of diagonal entries of λ in the Jordan canonical form.

The geometric multiplicity of λ is:

- $\operatorname{dim} N_{A-\lambda I}$
- the maximum number of linearly independent genuine λ-eigenvectors of A

■ the number of Jordan blocks corresponding to λ.
The index of λ is:

- the smallest d such that $N_{d}=N_{d+1}$

■ the "length of the longest chain" of generalized eigenvectors

- the largest m such that $(t-\lambda)^{m}$ is a factor of $m_{A}(t)$
- the size of the largest Jordan block corresponding to λ.

A key technical lemma

Lemma 4.7 (HW exercise)

The map $A-\lambda I$ is a well-defined injective map on quotient spaces:

$$
A-\lambda I: N_{j+1} / N_{j} \longrightarrow N_{j} / N_{j-1}, \quad A-\lambda I: \bar{x} \longmapsto \overline{(A-\lambda I) x}
$$

Therefore, $\operatorname{dim}\left(N_{j+1} / N_{j}\right) \leq \operatorname{dim}\left(N_{j} / N_{j-1}\right)$.

$$
v_{5} \longmapsto \overrightarrow{A-\lambda I} \longrightarrow v_{4} \longmapsto A-\lambda I \quad v_{3} \longmapsto A-\lambda I \quad v_{2} \longmapsto A-\lambda I \quad v_{1} \longmapsto A-\lambda I \quad 0
$$

$$
w_{3} \stackrel{A-\lambda I}{\longmapsto} w_{2} \stackrel{A-\lambda I}{\longmapsto} w_{1} \stackrel{A-\lambda I}{\longmapsto} 0
$$

$$
x_{2} \longmapsto \xrightarrow{A-\lambda I} x_{1} \stackrel{A-\lambda I}{ } 0
$$

$$
y_{1} \stackrel{A-\lambda I}{\longmapsto} 0
$$

$$
\cdots=N_{6}=N_{5} \supsetneq N_{4} \supsetneq N_{3} \supsetneq N_{2} \supsetneq N_{1} \supsetneq 0
$$

