Lecture 4.6: Generalized eigenspaces

Matthew Macauley

School of Mathematical \& Statistical Sciences
 Clemson University
 http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

Goals

Assume K is algebraically closed, and $\operatorname{dim} X=n$. Last time, we proved the following:

Spectral theorem

Let $A: X \rightarrow X$ be linear. Then

$$
X=E_{\lambda_{1}} \oplus \cdots \oplus E_{\lambda_{k}},
$$

where $E_{\lambda_{j}}=\bigcup_{m=1}^{\infty} N_{\left(A-\lambda_{j} l\right)^{m}}$ is the generalized eigenspace of λ_{j}.

We motivated it with a running example, a map with $p_{A}(t)=(t-\lambda)^{11}$, and $\operatorname{dim} N_{A-\lambda I}=4$:

However, we haven't actually proven that the generalized eigenvectors have this structure. In this lecture, we will show how to explicitly construct such a basis.

We'll also see why the generalized eigenspace structure determines the similarity class of A.

Generalized eigenspaces characterize similarity

Let $A: X \rightarrow X$ have eigenvalue λ of degree d_{λ}. For each $m=1,2, \ldots$, define

$$
N_{m}(\lambda)=N_{(A-\lambda l)^{m}}, \quad \text { and note that } \quad E_{\lambda}=\bigcup_{m=1}^{\infty} N_{m}(\lambda) .
$$

It turns out that A (up to a choice of basis) is completely determined by the dimensions of these "eigen-subspaces" $N_{1}(\lambda), \ldots, N_{d_{\lambda}}(\lambda)$, for each λ.

For another $B: X \rightarrow X$ with eigenvalue λ, denote its eigen-subspaces by $M_{m}(\lambda)=N_{(B-\lambda l)^{m}}$.

Theorem 4.11

The linear maps A and B are similar if and only if for each eigenvalue λ,

$$
\operatorname{dim} N_{m}(\lambda)=\operatorname{dim} M_{m}(\lambda), \quad \text { for all } m=1,2, \ldots
$$

The " \Rightarrow " implication is easy. Let $A=P B P^{-1}$.
Then $(A-\lambda I)^{m}=P(B-\lambda I)^{m} P^{-1}$, and similar maps have the same nullity.
For the " \Leftarrow " implication, we need to construct a basis for E_{λ} under which $A-\lambda I$ (and hence $B-\lambda I$) admits a nice matrix form.

This is the Jordan canonical form.

Basis construction (algebraic description)

Lemma 4.7 (HW)

The map $A-\lambda /$ is a well-defined injective map on quotient spaces, i.e.,

$$
A-\lambda I: N_{j+1} / N_{j} \longleftrightarrow N_{j} / N_{j-1}, \quad A-\lambda I: \bar{x} \longmapsto \overline{(A-\lambda I) x}
$$

Therefore, $\operatorname{dim}\left(N_{j+1} / N_{j}\right) \leq \operatorname{dim}\left(N_{j} / N_{j-1}\right)$.

We will construct our basis in batches, from "left-to-right", starting with $N_{d}=E_{\lambda}$.
Let $\bar{x}_{1}, \ldots, \bar{x}_{\ell_{0}}$ be a basis for N_{d} / N_{d-1}.
Apply $A-\lambda I$, to get $(A-\lambda I) \bar{x}_{j} \mapsto \bar{x}_{j}^{\prime}$.
The vectors $\bar{x}_{1}^{\prime}, \ldots, \bar{x}_{\ell_{0}}^{\prime}$ are linearly independent in N_{d-1} / N_{d-2}. Extend to a basis $\bar{x}_{1}^{\prime}, \ldots, \bar{x}_{\ell_{1}}^{\prime}$.
Apply $A-\lambda I$, to get $(A-\lambda I) \bar{x}_{j}^{\prime} \mapsto \bar{x}_{j}^{\prime \prime}$.
The vectors $\bar{x}_{1}^{\prime \prime}, \ldots, \bar{x}_{\ell_{1}}^{\prime \prime}$ are linearly independent in N_{d-2} / N_{d-3}. Extend to a basis $\bar{x}_{1}^{\prime \prime}, \ldots, \bar{x}_{\ell_{2}}^{\prime \prime}$.
Repeat this process, until we reach the genuine eigenvectors. The collection of representatives we've constructed is a basis for E_{λ}.

Basis construction (visualization)

Key points

$$
A-\lambda I: N_{j+1} / N_{j} \hookrightarrow N_{j} / N_{j-1} \quad \Longrightarrow \quad \operatorname{dim}\left(N_{j+1} / N_{j}\right) \leq \operatorname{dim}\left(N_{j} / N_{j-1}\right) .
$$

