Lecture 4.7: Jordan canonical form

Matthew Macauley

School of Mathematical \& Statistical Sciences Clemson University
http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

Overview

Spectral theorem

Let $A: X \rightarrow X$ be linear. Then

$$
X=E_{\lambda_{1}} \oplus \cdots \oplus E_{\lambda_{k}},
$$

where $E_{\lambda_{j}}=\bigcup_{m=1}^{\infty} N_{\left(A-\lambda_{j} /\right)^{m}}$ is the generalized eigenspace of λ_{j}.

Moreover, each $E_{\lambda_{j}}$ is a direct sum of subspaces invariant under both A and $\left(A-\lambda_{j} I\right)$.
Let's recall an old example where λ has algebraic multiplicity $\operatorname{dim} E_{\lambda}=11$ and geometric multiplicity $\operatorname{dim} N_{A-\lambda I}=4$.

The matrix of A with respect to this is block-diagonal, consisting of Jordan blocks.

Jordan canonical form

A Jordan block is a matrix of the form

$$
J_{\lambda}=\left[\begin{array}{ccccc}
\lambda & 1 & 0 & \cdots & 0 \\
0 & \lambda & 1 & \cdots & 0 \\
0 & 0 & \lambda & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & & 1 \\
0 & 0 & 0 & \cdots & \lambda
\end{array}\right]
$$

Every matrix A is similar to a Jordan matrix - a block-diagonal matrix of Jordan blocks:

$$
J=\left[\begin{array}{lllllll}
J_{\lambda_{1}, 1} & & & & & & \\
& \ddots & & & & & \\
& & J_{\lambda_{1}, n_{1}} & & & & \\
& & & \ddots & & & \\
& & & & J_{\lambda_{k}, 1} & & \\
& & & & & \ddots & \\
& & & & & & J_{\lambda_{k}, n_{k}}
\end{array}\right]
$$

This is called the Jordan normal form, or Jordan canonical form (JCF) of A.

Summary

Two linear maps $A, B: X \rightarrow X$ are similar iff they have the same Jordan canonical form.
For each eigenvalue λ, the algebraic multiplicity of λ is the:

- degree of $(t-\lambda)$ in $p_{A}(t)$
- maximum number of linearly independent generalized λ-eigenvectors of A
- number of diagonal entries of λ in the Jordan canonical form.

The geometric multiplicity of λ is the:

- $\operatorname{dim} N_{A-\lambda I}$
- maximum number of linearly independent genuine λ-eigenvectors of A
- number of Jordan blocks corresponding to λ.

The index of λ is the:

- smallest d such that $N_{d}=N_{d+1}$ (length of the largest "chain")
- degree of $(t-\lambda)$ in $m_{A}(t)$
- size of the largest Jordan block corresponding to λ.
A is diagonalizable if:
- X has a basis of genuine eigenvectors
- $m_{A}(t)$ has no repeated roots
- the Jordan canonical form is a diagonal matrix.

Commuting maps

Lemma 4.12

Let $A, B: X \rightarrow X$ be commuting linear maps, and $E_{\lambda}=\bigcup_{j=1}^{\infty} N_{(A-\lambda /)^{j}}$, the generalized λ-eigenspace of A. Then E_{λ} is B-invariant.

Theorem 4.13

Let $A, B: X \rightarrow X$ be commuting linear maps. There is a basis for X consisting of generalized eigenvectors of A and B.

Corollary 4.14

Let $A, B: X \rightarrow X$ be commuting diagonalizable linear maps. Then they are simultaneously diagonalizable. That is for some invertible $P: X \rightarrow X$,

$$
A=P D_{A} P^{-1} \quad \text { and } \quad B=P D_{B} P^{-1} .
$$

