Lecture 4.8: Generalized eigenfunctions of differential operators

Matthew Macauley

School of Mathematical \& Statistical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

Motivation: ODEs with repeated roots

Recall how to solve the differential equation $y^{\prime \prime}-3 y^{\prime}+2 y=0$:

- Look for a solution of the form $y(t)=e^{r t}$.
- Plug back in to get $e^{r t}\left(r^{2}-3 r+2\right)=0$, and so $r=1$ or $r=2$.
- The general solution is thus $y(t)=C_{1} e^{t}+C_{2} e^{2 t}$.

A "problem case" occurs when the "characteristic equation" has repeated roots.
For example, consider $y^{\prime \prime}-2 \lambda y^{\prime}+\lambda^{2} y=0$.
The same process gives $r_{1}=r_{2}=\lambda$, so we only get one solution, $y_{1}(t)=e^{\lambda t}$.
However, the solution space is two-dimensional. It turns out that $y_{2}(t)=t e^{\lambda t}$ is also a solution.

In this lecture, we'll see how this arises as a generalized eigenfunction of a differential operator.

The derivative operator

Clearly, $y_{1}(t)=e^{\lambda t}$ is an eigenfunction of $D=\frac{d}{d t}$.
Equivalently, it is in $N_{D-\lambda l}$, and solves the ODE

$$
(D-\lambda I) y=0 \quad \Leftrightarrow \quad\left(\frac{d}{d t}-\lambda\right) y=0 \quad \Leftrightarrow \quad y^{\prime}-\lambda y=0 .
$$

Generalized eigenfunctions in $N_{(D-\lambda /)^{2}}$ are solutions to the second order ODE

$$
(D-\lambda I)^{2} y=0, \quad \Leftrightarrow \quad\left(\frac{d}{d t}-\lambda\right)^{2} y=0, \quad \Leftrightarrow \quad y^{\prime \prime}-2 \lambda y^{\prime}+\lambda^{2} y=0
$$

It is easy to see that $y_{2}(t)=t e^{\lambda t}$ is in $N_{(D-\lambda /)^{2}}$, because

$$
D\left(y_{2}\right)=D\left(t e^{\lambda t}\right)=e^{\lambda t}+\lambda t e^{\lambda t}=y_{1}+\lambda y_{2} .
$$

Similarly, $y_{3}(t)=\frac{1}{2!} t^{2} e^{\lambda t}$ is in $N_{(D-\lambda /)^{3}}$, because

$$
D\left(y_{3}\right)=D\left(\frac{1}{2!} t^{2} e^{\lambda t}\right)=t e^{\lambda t}+\lambda \frac{1}{2!} t^{2} e^{\lambda t}=y_{2}+\lambda y_{3} .
$$

Repeating in this manner, we see that the generalized eigevectors for D are:

$$
\cdots \xrightarrow{D-\lambda l} \frac{1}{4!} t^{4} e^{\lambda t} \stackrel{D-\lambda l}{\longmapsto} \frac{1}{3!} t^{3} e^{\lambda t} \xrightarrow{D-\lambda l} \frac{1}{2!} t^{2} e^{\lambda t} \xrightarrow{D-\lambda l} t e^{\lambda t} \stackrel{D-\lambda l}{\longmapsto} e^{\lambda t} \xrightarrow{D-\lambda l} 0
$$

The generalized eigenspace of D for eigenvalue λ is thus

$$
E_{\lambda}=\left\{p(t) e^{\lambda t} \mid p \in K[t]\right\}
$$

Systems of linear differential equations

Consider the linear system $x^{\prime}=A x$:

$$
\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
$$

It is easy to check that if $A v=\lambda v$, then $x(t)=e^{\lambda t} v$ is a solution.
Thus, the general solution is

$$
x(t)=C_{1} e^{3 t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+C_{2} e^{-t}\left[\begin{array}{c}
1 \\
-2
\end{array}\right]=\left[\begin{array}{c}
C_{1} e^{3 t}+C_{2} e^{-t} \\
2 C_{1} e^{3 t}-2 C_{2} e^{-t}
\end{array}\right] .
$$

Now, consider an example that has only one eigenvector:

$$
\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-1 & -1 \\
1 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right], \quad \quad x_{1}(t)=e^{\lambda t} v_{1}=e^{-2 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

In an ODE course, one is taught to look for a solution of the form

$$
x_{2}(t)=t e^{-2 t} v+e^{-2 t} w
$$

and solve for v and w.
We'll see that what we're really doing is finding generalized eigenvectors of A.

Solving $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ with repeated eigenvalues

Suppose that $A v=\lambda v$, and so $x_{1}(t)=e^{\lambda t} v$ is a solution. Consider

$$
x_{2}(t)=t e^{\lambda t} v+e^{\lambda t} w,
$$

and plug this back into $x^{\prime}=A x$:

- $A x_{2}=t e^{\lambda t} A v+e^{\lambda t} A w$.
- $x_{2}^{\prime}=\left(e^{\lambda t} v+\lambda t e^{\lambda t} v\right)+\lambda e^{\lambda t} w$.

Equate like terms and divide by $e^{\lambda t}$:

- $t e^{\lambda t}: \quad A v=\lambda v$
- $e^{\lambda t}: \quad A w=v+\lambda w$.

In other words, $v=v_{1}$ is the eigenvector, and $w=v_{2}$ a generalized eigenvector. The general solution is

$$
x(t)=C_{1} x_{1}(t)+C_{2} x_{2}(t)=C_{1} e^{\lambda t} v_{1}+C_{2} e^{\lambda t}\left(t v_{1}+v_{2}\right) .
$$

In summary, if the generalized eigenvectors of A are

$$
v_{2} \stackrel{A-\lambda I}{\longmapsto} v_{1} \stackrel{A-\lambda I}{\longmapsto} 0
$$

then the generalized eigenvectors of $A-\frac{d}{d t}$ are

$$
\cdots \stackrel{A-\frac{d}{d t}}{\longmapsto} e^{\lambda t}\left(\frac{t^{2}}{2!} v_{1}+t v_{2}+v_{3}\right) \stackrel{A-\frac{d}{d t}}{\longmapsto} e^{\lambda t}\left(t v_{1}+v_{2}\right) \stackrel{A-\frac{d}{d t}}{\longmapsto} e^{\lambda t} v_{1} \stackrel{A-\frac{d}{d t}}{\longmapsto} 0
$$

A Jordan matrix perspective

Formally, suppose we have the system $x^{\prime}=A x$, and $A=P J P^{-1}$.

$$
\left(P^{-1} x\right)^{\prime}=J\left(P^{-1} x\right), \quad \text { let } z=P^{-1} x \quad \Leftrightarrow \quad x=P z
$$

Now, we just have to analyze $z^{\prime}=J z$ for a Jordan matrix.
The solution is

$$
z=e^{\lambda t}\left[\begin{array}{cccccc}
1 & t & \frac{t^{2}}{2!} & \frac{t^{3}}{3!} & \cdots & \frac{t^{k-1}}{(k-1)!} \\
& 1 & t & \frac{t^{2}}{2!} & \cdots & \frac{t^{k-2}}{(k-2)!} \\
& & 1 & t & \cdots & \frac{t^{k-3}}{(k-3)!} \\
& & & \ddots & \ddots & \vdots \\
& & & & 1 & t \\
& & & & & 1
\end{array}\right]\left[\begin{array}{c}
C_{1} \\
C_{2} \\
C_{3} \\
\vdots \\
C_{n-1} \\
C_{n}
\end{array}\right]=e^{J t} c
$$

It is easy to extend this to one where J has multiple Jordan blocks.

An example

Let's return to our example of $x^{\prime}=A x$, with only one eigenvector:

$$
\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-1 & -1 \\
1 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right], \quad x_{1}(t)=e^{\lambda t} v_{1}=e^{-2 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The Jordan canonical form $A=P J P^{-1}$ is

$$
\left[\begin{array}{cc}
-1 & -1 \\
1 & -3
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
-2 & 1 \\
0 & -2
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right]
$$

The solution is $x=P z$, where $z=e^{\lambda t} e^{J t} c$:

$$
x(t)=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] e^{-2 t}\left[\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
C_{1} \\
C_{2}
\end{array}\right]=e^{-2 t}\left[\begin{array}{cc}
1 & t+1 \\
1 & t
\end{array}\right]\left[\begin{array}{l}
C_{1} \\
C_{2}
\end{array}\right]=\left[\begin{array}{c}
C_{1} e^{-2 t}+C_{2} e^{-2 t}(t+1) \\
C_{1} e^{-2 t}+C_{2} t e^{-2 t}
\end{array}\right]
$$

Notice that we can rearrange terms to get this into a familiar form:

$$
x(t)=C_{1} e^{-2 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+C_{2} e^{-2 t}\left(t\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=C_{1} e^{-2 t} v_{1}+C_{2} e^{-2 t}\left(t v_{1}+v_{2}\right)
$$

In other words, the generalized eigenvectors are:

$$
e^{-2 t}\left(t\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right) \stackrel{A-\frac{d}{d t}}{\longrightarrow} e^{-2 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \xrightarrow{A-\frac{d}{d t}}\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

