Lecture 5.3: Gram-Schmidt and orthogonal projection

Matthew Macauley

School of Mathematical \& Statistical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

Constructing an orthonormal basis

Throughout, assume that X is an n-dimensional inner product space.
In the last lecture, we showed why having an orthogonal (or even better: orthonormal) basis is very convenient.

We'll start this lecture by showing how to construct an orthogonal basis.

Gram-Schmidt process

Given an arbitrary basis x_{1}, \ldots, x_{n}, construct an orthonormal basis q_{1}, \ldots, q_{n} for which $q_{k} \in \operatorname{Span}\left(x_{1}, \ldots, x_{k}\right)$.

Remark

In matrix form, this leads to the QR factorization:

$$
A=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]=\left[\begin{array}{llll}
q_{1} & q_{2} & \cdots & q_{n}
\end{array}\right]\left[\begin{array}{cccc}
\left\langle x_{1}, q_{1}\right\rangle & \left\langle x_{2}, q_{1}\right\rangle & \left\langle x_{3}, q_{1}\right\rangle & \cdots \\
0 & \left\langle x_{2}, q_{2}\right\rangle & \left\langle x_{3}, q_{2}\right\rangle & \cdots \\
0 & 0 & \left\langle x_{3}, q_{3}\right\rangle & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]=Q R .
$$

Identifying a space with its dual

Earlier in this class, we found it helpful to think of dual vectors $\ell \in X^{\prime}$ as row vectors.
Going forward, it will be helpful to canonically identify these elements with vectors in X.
However, the isomorphism will depend on the inner product.

Proposition 5.2

Every linear function $\ell \in X^{\prime}$ can be written as

$$
\ell(x)=\langle x, y\rangle, \quad \text { for some fixed } y \in X
$$

Corollary 5.3

For any fixed $y \in X$, the mapping

$$
R_{y}: X \longrightarrow X^{\prime}, \quad R_{y}: y \longmapsto\langle-, y\rangle
$$

is an isomorphism. There is an analogous isomorphism

$$
L_{x}: X \longrightarrow X^{\prime}, \quad L_{x}: x \longmapsto\langle x,-\rangle .
$$

Orthogonal complements

Definition

Let Y be a subspace of X. The orthogonal complement of Y is the set

$$
Y^{\perp}:=\{x \in X \mid\langle x, y\rangle=0, \quad \forall y \in Y\} .
$$

Proposition 5.4

For any subspace Y of X, we have $X=Y \oplus Y^{\perp}$.

Examples of orthogonal complements

Let's return to several familiar examples.

1. $X=\mathbb{R}^{n}$, with the standard dot product.
2. $X=\mathbb{R}^{2}$, with inner product

$$
\left\langle a_{1} e_{1}+a_{2} e_{2}, b_{1} e_{1}+b_{2} e_{2}\right\rangle=\left[\begin{array}{ll}
b_{1} & b_{2}
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=2 a_{1} b_{1}+a_{1} b_{2}+b_{1} a_{2}+2 a_{2} b_{2} .
$$

3. $V=\operatorname{Hom}(X, Y)$ with inner product

$$
\langle A, B\rangle=\operatorname{tr}\left(B^{T} A\right)=\sum_{i, j} a_{i j} b_{i j}
$$

4. $X=\operatorname{Per}_{2 \pi}(\mathbb{R})$, the 2π-periodic functions, with the inner product

$$
\langle f, g\rangle=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) g(x) d x
$$

Orthogonal projection

If $X=Y \oplus Y^{\perp}$, then the map

$$
P_{Y}: X \longrightarrow X, \quad P_{Y}: y+y^{\perp} \longmapsto y
$$

is the orthogonal projection of X onto Y.

Proposition 5.5 (exercise)

The orthogonal projection map P_{Y} is linear and idempotent (i.e., $P_{Y}^{2}=P_{Y}$), and hence diagonalizable.

Proposition 5.6

The orthogonal projection map $P_{Y}: X \longrightarrow X$ sends $x \in X$ to

$$
P_{Y}(x)=\arg \min \{\|x-y\|: y \in Y\} .
$$

