Lecture 5.4: Adjoints

Matthew Macauley

School of Mathematical \& Statistical Sciences
 Clemson University
 http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

Identifying a space with its dual

Early on, we thought of scalar functions as row vectors, because intuitively:
"Every $\ell \in X^{\prime}$ can be realized by simply taking the dot product with some fixed vector."
In the previous lecture, we generalized this to arbitrary (n-dimensional) inner product spaces.

Key point

Every scalar function $\ell \in X^{\prime}$ can be expressed as $\langle-, y\rangle$, for some $y \in X$.

This canonically identifies X with X^{\prime}, via $y \mapsto\langle-, y\rangle$.
Let's compare two examples of this:
■ \mathbb{R}^{2}, with $(x, y):=\left[\begin{array}{ll}y_{1} & y_{2}\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=x_{1} y_{1}+x_{2} y_{2}$,
■ \mathbb{R}^{2}, with $\langle x, y\rangle:=\left[\begin{array}{ll}y_{1} & y_{2}\end{array}\right]\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=2 x_{1} y_{1}+x_{1} y_{2}+x_{2} y_{1}+2 x_{2} y_{2}$.

The transpose vs. the adjoint

Consider a linear map $A: X \rightarrow U$ between real inner product spaces.
The transpose of $A: X \rightarrow U$ is a linear map $A^{\prime}: U^{\prime} \rightarrow X^{\prime}$ satisfying

$$
\left(A^{\prime} \ell, x\right)=(\ell, A x), \quad x \in X, \ell \in U^{\prime} .
$$

In the picture below, $A^{\prime}: \ell \mapsto m$.

If we identify X and U with their duals via $y \mapsto\langle-, y\rangle$, the transpose $\langle-, u\rangle \mapsto\langle-, y\rangle$ defines a map $u \mapsto y$ called the adjoint of A, denoted A^{*}.

Key idea

Given a linear map $A: X \rightarrow U$,

- the transpose $A^{\prime}: U^{\prime} \rightarrow X^{\prime}$ maps $\ell \mapsto m$, independent of an inner product,
- the adjoint $A^{*}: U \rightarrow X$ maps $u \mapsto y$, and depends on the inner product structure.

Formal definition of the adjoint

Definition

Let $A: X \rightarrow U$ be a linear map between real inner product spaces. The adjoint of A is the unique map $A^{*}: U \rightarrow X$ such that

$$
\underbrace{\left\langle x, A^{*} u\right\rangle}_{\text {oroduct in } x}=\underbrace{\langle A x, u\rangle}_{\text {inner product in } U}
$$

Basic properties of adjoints

Proposition 5.7

Let $A, B: X \rightarrow U$ and $C: U \rightarrow V$ be linear maps between real inner product spaces.
(i) $(A+B)^{*}=A^{*}+B^{*}$
(ii) $(C A)^{*}=A^{*} C^{*}$
(iii) If A is bijective, then $\left(A^{-1}\right)^{*}=\left(A^{*}\right)^{-1}$
(iv) $\left(A^{*}\right)^{*}=A$
(v) The matrix representations of A and A^{*} are transposes of each other.

Adjoints and the four subspaces

Proposition 5.8 (HW)

Let $A: X \rightarrow U$ be a linear maps between finite-dimensional inner product spaces. Then
(a) $N_{A^{*}}=R_{A}^{\perp}$
(b) $R_{A^{*}}=N_{A}^{\perp}$
(c) $N_{A}=R_{A^{*}}^{\perp}$
(d) $R_{A}=N_{A^{*}}^{\perp}$.

Together, this tells us that

■ $X=R_{A^{*}} \oplus N_{A} \quad$ "the orthogonal complement of the row space is the nullspace"

- U $=R_{A} \oplus N_{A^{*}} \quad$ "the orthogonal complement of the column space is the left nullspace"

