Lecture 5.4: Adjoints

Matthew Macauley

School of Mathematical & Statistical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

Identifying a space with its dual

Early on, we thought of scalar functions as row vectors, because intuitively:

"Every $\ell \in X'$ can be realized by simply taking the dot product with some fixed vector."

In the previous lecture, we generalized this to arbitrary (n-dimensional) inner product spaces.

Key point

Every scalar function $\ell \in X'$ can be expressed as $\langle -, y \rangle$, for some $y \in X$.

This canonically identifies X with X', via $y \mapsto \langle -, y \rangle$.

Let's compare two examples of this:

•
$$\mathbb{R}^2$$
, with $(x, y) := [y_1 \ y_2] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 y_1 + x_2 y_2$.
• \mathbb{R}^2 , with $\langle x, y \rangle := [y_1 \ y_2] \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 2x_1 y_1 + x_1 y_2 + x_2 y_1 + 2x_2 y_2$.

The transpose vs. the adjoint

Consider a linear map $A: X \rightarrow U$ between real inner product spaces.

The transpose of $A: X \to U$ is a linear map $A': U' \to X'$ satisfying

$$(A'\ell, x) = (\ell, Ax), \qquad x \in X, \ \ell \in U'.$$

In the picture below, $A': \ell \mapsto m$.

If we identify X and U with their duals via $y \mapsto \langle -, y \rangle$, the transpose $\langle -, u \rangle \mapsto \langle -, y \rangle$ defines a map $u \mapsto y$ called the adjoint of A, denoted A^* .

Key idea

Given a linear map $A: X \to U$,

- the transpose $A': U' \to X'$ maps $\ell \mapsto m$, independent of an inner product,
- the adjoint $A^*: U \to X$ maps $u \mapsto y$, and depends on the inner product structure.

Formal definition of the adjoint

Definition

Let $A: X \to U$ be a linear map between real inner product spaces. The adjoint of A is the unique map $A^*: U \to X$ such that

Basic properties of adjoints

Proposition 5.7

Let $A, B: X \to U$ and $C: U \to V$ be linear maps between real inner product spaces.

- (i) $(A+B)^* = A^* + B^*$
- (ii) $(CA)^* = A^*C^*$
- (iii) If *A* is bijective, then $(A^{-1})^* = (A^*)^{-1}$
- (iv) $(A^*)^* = A$
- (v) The matrix representations of A and A^* are transposes of each other.

Adjoints and the four subspaces

Proposition 5.8 (HW)

Let $A: X \to U$ be a linear maps between finite-dimensional inner product spaces. Then (a) $N_{A^*} = R_A^{\perp}$ (b) $R_{A^*} = N_A^{\perp}$ (c) $N_A = R_{A^*}^{\perp}$ (d) $R_A = N_{A^*}^{\perp}$.

Together, this tells us that

- $X = R_{A^*} \oplus N_A$ "the orthogonal complement of the row space is the nullspace"
- $U = R_A \oplus N_{A^*}$ "the orthogonal complement of the column space is the left nullspace"