Lecture 5.5: Projection and least squares

Matthew Macauley

School of Mathematical & Statistical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

Self-adjointness

Recall that the adjoint of A is the map $A^*: U \to X$ such that

Definition

A linear map $A: X \to U$ is self-adjoint if $A^* = A$.

Proposition 5.9

The linear maps A^*A and AA^* are self-adjoint.

Projections and orthogonal

Recall that if $X = Y \oplus Y^{\perp}$, then the map

$$P_Y : X \longrightarrow X, \qquad P_Y : y + y^{\perp} \longmapsto y$$

is the orthogonal projection of X onto Y.

Proposition 5.10

Orthogonal projections are self-adjoint.

Some books define a projection to be any linear map $P: X \to X$ such that $P^2 = P$.

It is not hard to show that $X = R_P \oplus N_P$.

Exercise (HW)

A projection $P: X \to X$ is an orthogonal projection if and only if it is self-adjoint.

More on the map A^*A

Lemma 5.11

The maps A and A^*A have the same nullspace.

Suppose A is an $m \times n$ matrix (m > n) with linearly independent columns. Then:

- the columns of A are a *basis* for the range (column space) of A
- A*A is invertible.

The map A^*A and projection

The fact that $N_{A^*A} = N_A$, and the following, is the crux of the least squares method of finding the "best fit line."

Corollary 5.12

Consider an underdetermined system Ax = b, where $A: X \to U$ has trivial nullspace. The (unique) vector x that minimizes $||Ax - b||^2$ is the solution to $A^*Az = A^*b$.

An example of least squares

Let's find the "best fit line" $a_0 + a_1 x$ through the points (1, 1), (2, 2), and (3, 2) in \mathbb{R}^2 .

The projection map $A(A^*A)^{-1}A^*$

Key idea

Let y_1, \ldots, y_k be a basis for Y, and $A = [y_1 \ y_2 \ \cdots \ y_k]$. Then

 $A(A^*A)^{-1}A^*$

is the orthogonal projection matrix onto Y.