Lecture 5.6: Isometries

Matthew Macauley

School of Mathematical \& Statistical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

Overview

Roughly speaking, an isometry is a distance-preserving map.

Definition

Let X be an inner product space. A function $A: X \rightarrow X$ is an isometry if

$$
\|A x-A y\|=\|x-y\|, \quad \text { for all } x, y \in X
$$

Examples

The following are all isometries of \mathbb{R}^{n} :

1. any translation
2. any rotation
3. any reflection
4. any compositions of these.

The isometries of X form a group \ldots but that's not a group we're all that interested in.

Orthogonal maps

Given any isometry, one can compose it with a translation to get an isometry that fixes 0 .
Conversely, any isometry can be decomposed into one that fixes 0 , followed by a translation.

Definition

An isometry $A: X \rightarrow X$ fixing 0 is said to be orthogonal.
The orthogonal maps on X form a group called the orthogonal group, denoted $O(X)$.

If $X=\mathbb{R}^{n}$, we denote this by $O(n)$ or O_{n}.
We will say that a matrix orthogonal if it represents an orthogonal linear map.

Remark

A matrix A is orthogonal if and only if its columns are orthonormal. That is, if $A^{T} A=I$.

Next, we'll show that all orthogonal maps are linear.

Properties of orthogonal maps

Theorem 5.13

Let $A: X \rightarrow X$ be orthogonal.
(i) A is linear
(ii) $A^{*} A=I$ (and conversely)
(iii) A is invertible, and A^{-1} is an isometry
(iv) $\operatorname{det} A= \pm 1$.

Key point

The geometric meaning of this theorem is that any map fixing 0 that preserves distances is linear, preserves angles, and preserves volume.

Definition

The subgroup of $O(X)$ of maps with determinant 1 is the special orthogonal group, denoted $S O(X)$.

Elements in $S O(X)$ describe rotations.

