Lecture 5.8: Sequences and convergence

Matthew Macauley

School of Mathematical & Statistical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

Sequences of real and complex numbers

Definition

A sequence $\{a_k\}$ of numbers:

- 1. converges to a limit a if $|a_k-a| \to 0$. We write $\lim_{k \to \infty} a_k = a$.
- 2. is Cauchy if $|a_k a_j| \to 0$ as $j, k \to \infty$.
- 3. is bounded if for some $R \ge 0$, every $|a_k| < R$.

The real (and complex) numbers are complete: every Cauchy sequence converges.

They are also locally compact: every bounded sequence contains a convergent subsequence.

Goal

Extend these properties from numbers to finite-dimensional inner product spaces.

Sequences of vectors

Definition

A sequence $\{x_k\}$ of vectors:

- 1. converges to a limit x if $||x_k x|| \to 0$. We write $\lim_{k \to \infty} x_k = x$.
- 2. is Cauchy if $||x_k x_j|| \to 0$ as $j, k \to \infty$.
- 3. is bounded if for some $R \ge 0$, every $||x_k|| < R$.

Completeness of inner product spaces

Proposition 5.17

Every finite-dimensional inner product space is complete.

Local compactness of inner product spaces

Proposition 5.18

Let X be an inner product space. Then X is locally compact if and only if $\dim X < \infty$.