Lecture 6.3: Normal linear maps

Matthew Macauley

School of Mathematical \& Statistical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

Commuting self-adjoint maps

When we studied Jordan canonical form, we proved the following

Corollary 4.14

Let $A, B: X \rightarrow X$ be commuting diagonalizable linear maps. Then they are simultaneously diagonalizable. That is, for some invertible $P: X \rightarrow X$,

$$
A=P D_{A} P^{-1} \quad \text { and } \quad B=P D_{B} P^{-1} .
$$

This is almost enough to establish the following:

Theorem 6.4

Suppose H and K are self-adjoint commuting maps. Then they have a common spectral resolution. That is, there are orthogonal projections $P_{j}: X \rightarrow X$ such that

$$
I=\sum_{j=1}^{k} P_{j}, \quad H=\sum_{j=1}^{k} \lambda_{j} P_{j}, \quad K=\sum_{j=1}^{k} \mu_{j} P_{j}
$$

Proposition 6.5

Let $A: X \rightarrow X$ be an anti-self-adjoint map of an inner product space. Then
(i) the eigenvalues of A are purely imaginary,
(ii) X has an orthonormal basis of eigenvectors of A.

Which maps have orthonormal eigenvectors?

Notice that the following linear maps all have orthonormal bases of eigenvectors:

1. self-adjoint: $H^{*}=H$
2. anti-self-adjoint: $A^{*}=-A$
3. orthogonal: $Q^{*}=Q^{T}=Q^{-1}$
4. unitary: $U^{*}=\bar{U}^{T}=U^{-1}$

The following generalizes all of these:

Definition

A linear map $N: X \rightarrow X$ is normal if $N^{*} N=N N^{*}$.

Note that $N N^{*}$ and $N^{*} N$ are self-adjoint, and hence normal.

Theorem 6.6

If $N: X \rightarrow X$ is normal, then X has an orthonormal basis of eigenvectors of N.
The reason why this holds is because $N=\frac{N+N^{*}}{2}+\frac{N-N^{*}}{2}=H+A$.

Properties of normal linear maps

Proposition 6.7

For a linear map $M: X \rightarrow X$ on an inner product space,
(i) if $\langle M x, x\rangle=0$ for all $x \in X$, then $M=0$.
(ii) M is normal if and only if

$$
\|M x\|=\left\|M^{*} x\right\|, \quad \text { for all } x \in X
$$

Corollary 6.8

If $N: X \rightarrow X$ is normal, then N and N^{*} have the same nullspace.

Unitary linear maps

Proposition 6.9

Let $U: X \rightarrow X$ be unitary. Then

1. X has an orthonormal basis of eigenvectors
2. each eigenvalue has norm 1 .
