Lecture 6.4: The Rayleigh quotient

Matthew Macauley

School of Mathematical \& Statistical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

Overview

We derived the spectral resolution of self-adjoint maps using the spectral theory of linear maps.

In this lecture, we'll give an alternate proof that has several advantages:

1. It doesn't assume the fundamental theorem of algebra.
2. Over \mathbb{R}, it avoids complex numbers.
3. It leads to a "min-max principle" which characterizes eigenvalues and eigenvectors as critical points of a particular function.

Throughout, let $H: X \rightarrow X$ be self-adjoint, with
■ eigenvalues $\lambda_{1} \leq \cdots \leq \lambda_{n}$

- orthonormal eigenvectors v_{1}, \ldots, v_{n}.

Recall that

$$
\langle x, x\rangle=\sum_{j=1}^{n} a_{j}^{2} \quad \text { and } \quad\langle x, H x\rangle=\sum_{j=1}^{n} \lambda_{j} a_{j}^{2}
$$

The Rayleigh quotient

Definition

For a self-adjoint map $H: X \rightarrow X$, define the Rayleigh quotient of H as

$$
R: X \backslash\{0\} \longrightarrow \mathbb{R}, \quad R(x)=R_{H}(x)=\frac{\langle x, H x\rangle}{\langle x, x\rangle}=\left\langle\frac{x}{\|x\|}, H \frac{x}{\|x\|}\right\rangle .
$$

Note that if $H v_{i}=\lambda_{i} v_{i}$, then $R\left(v_{i}\right)=\lambda_{i}$.

Goal

Show that the critical points occur at the eigenvectors of H, and deduce that H has a full set of eigenvectors.

The Rayleigh quotient's minimum value

Since $R(x)=\frac{\langle x, H x\rangle}{\langle x, x\rangle}=R(k x)$, we can think of R as being a map from the unit sphere.
This is compact (closed and bounded), so $R(x)$ achieves a minimum and maximum value.
Let $v \in X$ satisfy $R(v)=\min _{\|u\|=1} R(u):=\lambda$.

Goal

Show that $H v=\lambda v$, and that λ is the smallest eigenvalue of H.

Pick any other vector $w \in X$, a parameter $t \in \mathbb{R}$, and consider $R(v+t w)$.

The second-smallest eigenvalue of H

Let $v_{1} \in X$ satisfy $R\left(v_{1}\right)=\min _{\|u\|=1} R(u):=\lambda_{1}$.
We just showed that $H v_{1}=\lambda_{1} v_{1}$, and λ_{1} is the smallest eigenvalue.
Now, let

$$
X_{1}:=\operatorname{Span}\left(v_{1}\right)^{\perp}, \quad \text { and so } \quad X=X_{1} \oplus \operatorname{Span}\left(v_{1}\right), \quad \operatorname{dim} X_{1}=n-1
$$

Goal

(i) Show that X_{1} is H-invariant
(ii) Repeat the previous step (minimize the Rayleigh quotient) on X_{1}
(iii) Define $X_{2}=\operatorname{Span}\left(\left\{v_{1}, v_{2}\right\}\right)^{\perp}$, and iterate this process.

The min-max principle

Theorem 6.8

Let $H: X \rightarrow X$ be self-adjoint with eigenvalues $\lambda_{1} \leq \cdots \leq \lambda_{n}$. Then

$$
\lambda_{k}=\min _{\operatorname{dim} S=k}\left\{\max _{x \in S \backslash 0} R_{H}(x)\right\} .
$$

Summary and applications of the Rayleigh quotient

For a self-adjoint map $H: X \rightarrow X$, the Rayleigh quotient of H is

$$
R: X \backslash\{0\} \longrightarrow \mathbb{R}, \quad R(x)=R_{H}(x)=\frac{\langle x, H x\rangle}{\langle x, x\rangle}=\left\langle\frac{x}{\|x\|}, H \frac{x}{\|x\|}\right\rangle .
$$

Summary of the Rayleigh quotient

(i) The eigenvectors of H are the critical points of $R_{H}(x)$, i.e., the first derivatives of $R_{H}(x)$ are zero iff x is an eigenvector.
(ii) $R_{H}\left(v_{i}\right)=\lambda_{i}$ for any $H v_{i}=\lambda_{i} v_{i}$.
(iii) In particular,

$$
\lambda_{1}=\min _{x \neq 0} R_{H}(x), \quad \lambda_{n}=\max _{x \neq 0} R_{H}(x)
$$

Application to numerical linear algebra

Let H be real-symmetric with $H v=\lambda v$. If $\|v-w\| \leq \epsilon$, then $\left|\lambda-R_{H}(w)\right| \leq \mathcal{O}\left(\epsilon^{2}\right)$.
That is, $R_{H}(w)$ is a 2 nd order Taylor approximation of the eigenvalue.

