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Overview

In an earlier lecture, we gave examples of orthogonal functions arising from differential
equations (ODEs).

The reason why they exist is because they are eigenfunctions of a self-adjoint differential
operator.

This is the idea of Sturm-Liouville theory, which we will summarize here.

We will not assume any knowledge about differential equations, other than what they are.

For more detailed information, see my series of lectures on Advanced Engineering
Mathematics.
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Self-adjointness of the SL operator

Definition

A Sturm-Liouville equation is a 2nd order ODE of the following form:

−
d

dx

(
p(x)y ′

)
+ q(x)y = λw(x)y , where p(x), q(x), w(x) > 0.

We are usually interested in solutions y(x) on [a, b], under homogeneous BCs:

α1y(a) + α2y
′(a) = 0 α2

1 + α2
2 > 0

β1y(b) + β2y
′(b) = 0 β2

1 + β2
2 > 0.

Together, this BVP is called a Sturm-Liouville (SL) problem.

Remark

Consider the linear differential operator L =
1

w(x)

(
−

d

dx

[
p(x)

d

dx

]
+ q(x)

)
.

C∞[a, b]
L1=p(x) d

dx // C∞[a, b]
L2=− 1

w(x)
d
dx

+
q(x)
w(x) // C∞[a, b]

y
� // p(x)y ′(x)

� // −1
w(x)

d
dx

[
p(x)y ′(x)

]
+ q(x)

w(x)
y(x)

An SL equation is just an eigenvalue equation: Ly = λy , and L = L2 ◦ L1 is self-adjoint!
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Main theorem

The SL operator L =
1

w(x)

(
−

d

dx

[
p(x)

d

dx

]
+ q(x)

)
is self-adjoint on C∞α,β [a, b] with

respect to the inner product

〈f , g〉 =

∫ b

a
f (x)g(x)w(x) dx .

This means that:

(a) The eigenvalues are real and can be ordered so λ1 < λ2 < λ3 < · · ·!∞.

(b) Each eigenvalue λi has a unique (up to scalars) eigenfunction yi (x).

(c) W.r.t. the inner product 〈f , g〉 :=
∫ b
a f (x)g(x)w(x) dx , the eigenfunctions form an

orthogonal basis on the subspace of functions C∞α,β [a, b] that satisfy the BCs.

Definition

If f ∈ C∞α,β [a, b], then f can be written uniquely as a linear combination of the

eigenfunctions. That is,

f (x) =
∞∑
n=1

cnyn(x), where cn =
〈f , yn〉
〈yn, yn〉

=

∫ b
a f (x)yn(x)w(x) dx∫ b
a ||yn(x)||2w(x) dx

.

This is called a generalized Fourier series with respect to the orthogonal basis {yn(x)} and
weighting function w(x).
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Fourier series

Dirichlet BCs

−y ′′ = λy , y(0) = 0, y(π) = 0 is an SL problem with:

Eigenvalues: λn = n2, n = 1, 2, 3, . . . .

Eigenfunctions: yn(x) = sin(nx).

The orthogonality of the eigenvectors means that

〈ym, yn〉 :=

∫ π

0
ym(x)yn(x)w(x) dx =

∫ π

0
sin(mx) sin(nx) dx =

{
0 if m 6= n

π/2 if m = n.

Note that this means that ||yn|| := 〈yn, yn〉1/2 =
√
π/2.

Fourier series: any function f (x), continuous on [0, π] satisfying f (0) = 0, f (π) = 0 can be
written uniquely as

f (x) =
∞∑
n=1

bn sin nx

where

bn =
〈f , sin nx〉
〈sin nx , sin nx〉

=

∫ π
0 f (x) sin nx dx

|| sin nx ||2
=

2

π

∫ π

0
f (x) sin nx dx .
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Fourier series

Neumann BCs

−y ′′ = λy , y ′(0) = 0, y ′(π) = 0 is an SL problem with:

Eigenvalues: λn = n2, n = 0, 1, 2, 3, . . . .

Eigenfunctions: yn(x) = cos(nx).

The orthogonality of the eigenvectors means that

〈ym, yn〉 :=

∫ π

0
ym(x)yn(x)w(x) dx =

∫ π

0
cos(mx) cos(nx) dx =

{
0 if m 6= n

π/2 if m = n > 0.

Note that this means that ||yn|| := 〈yn, yn〉1/2 =

{√
π/2 n > 0
√
π n = 0.

Fourier series: any function f (x), continuous on [0, π] satisfying f ′(0) = 0, f ′(π) = 0 can be
written uniquely as

f (x) =
∞∑
n=0

an cos nx

where

an =
〈f , cos nx〉

〈cos nx , cos nx〉
=

∫ π
0 f (x) cos nx dx

|| cos nx ||2
=

2

π

∫ π

0
f (x) cos nx dx .
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More complicated Sturm-Liouville problems

Every 2nd order linear homogeneous ODE, y ′′ + P(x)y ′ + Q(x)y = 0 can be written in
self-adjoint or “Sturm-Liouville form”:

−
d

dx

(
p(x)y ′

)
+ q(x)y = λw(x)y , where p(x), q(x), w(x) > 0.

Examples from physics and engineering

Legendre’s equation: (1− x2)y ′′ − 2xy ′ + n(n + 1)y = 0. Used for modeling spherically
symmetric potentials in the theory of Newtonian gravitation and in electricity &
magnetism (e.g., the wave equation for an electron in a hydrogen atom).

Parametric Bessel’s equation: x2y ′′ + xy ′ + (λx2 − ν2)y = 0. Used for analyzing
vibrations of a circular drum.

Chebyshev’s equation: (1− x2)y ′′ − xy ′ + n2y = 0. Arises in numerical analysis
techniques.

Hermite’s equation: y ′′ − 2xy ′ + 2ny = 0. Used for modeling simple harmonic
oscillators in quantum mechanics.

Laguerre’s equation: xy ′′ + (1− x)y ′ + ny = 0. Arises in a number of equations from
quantum mechanics.

Airy’s equation: y ′′ − k2xy = 0. Models the refraction of light.
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Legendre’s differential equation

Consider the following Sturm-Liouville problem, defined on (−1, 1):

−
d

dx

[
(1− x2)

d

dx
y
]

= λy ,
[
p(x) = 1− x2, q(x) = 0, w(x) = 1

]
.

The eigenvalues are λn = n(n + 1), n ∈ N, and the eigenfunctions solve Legendre’s equation:

(1− x2)y ′′ − 2xy ′ + n(n + 1)y = 0.

For each n, one solution is a degree-n “Legendre polynomial”

Pn(x) =
1

2nn!

dn

dxn

[
(x2 − 1)n

]
.

They are orthogonal with respect to the inner product 〈f , g〉 =

∫ 1

−1
f (x)g(x) dx .

It can be checked that

〈Pm,Pn〉 =

∫ 1

−1
Pm(x)Pn(x) dx =

2

2n + 1
δmn.

By orthogonality, every function f , continuous on −1 < x < 1, can be expressed using
Legendre polynomials:

f (x) =
∞∑
n=0

cnPn(x), where cn =
〈f , Pn〉
〈Pn, Pn〉

= (n + 1
2

) 〈f , Pn〉
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Legendre polynomials

P0(x) = 1

P1(x) = x

P2(x) = 1
2

(3x2 − 1)

P3(x) = 1
2

(5x3 − 3x)

P4(x) = 1
8

(35x4 − 30x2 + 3)

P5(x) = 1
8

(63x5 − 70x3 + 15x)

P6(x) = 1
8

(231x6 − 315x4 + 105x2 − 5)

P7(x) = 1
16

(429x7 − 693x5 + 315x3 − 35x)
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Parametric Bessel’s differential equation

Consider the following Sturm-Liouville problem on [0, a]:

−
d

dx

(
xy ′
)
−
ν2

x
y = λxy ,

[
p(x) = x , q(x) = −

ν2

x
, w(x) = x

]
.

For a fixed ν, the eigenvalues are λn = ω2
n := α2

n/a
2, for n = 1, 2, . . . .

Here, αn is the nth positive root of Jν(x), the Bessel functions of the first kind of order ν.

The eigenfunctions solve the parametric Bessel’s equation:

x2y ′′ + xy ′ + (λx2 − ν2)y = 0.

Fixing ν, for each n there is a solution Jνn(x) := Jν(ωnx).

They are orthogonal with repect to the inner product 〈f , g〉 =

∫ a

0
f (x)g(x) x dx .

It can be checked that

〈Jνn, Jνm〉 =

∫ a

0
Jν(ωnx)Jν(ωmx) x dx = 0, if n 6= m.

By orthogonality, every continuous function f (x) on [0, a] can be expressed in a
“Fourier-Bessel” series:

f (x) ∼
∞∑
n=0

cnJν(ωnx), where cn =
〈f , Jνn〉
〈Jνn, Jνn〉

.
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Bessel functions (of the first kind)

Jν(x) =
∞∑
m=0

(−1)m
1

m!(ν + m)!

( x
2

)2m+ν
.
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Chebyshev’s differential equation

Consider the following Sturm-Liouville problem on [−1, 1]:

−
d

dx

[√
1− x2

d

dx
y
]

= λ
1

√
1− x2

y ,
[
p(x) =

√
1− x2, q(x) = 0, w(x) = 1√

1−x2

]
.

The eigenvalues are λn = n2 for n ∈ N, and the eigenfunctions solve Chebyshev’s equation:

(1− x2)y ′′ − xy ′ + n2y = 0.

For each n, one solution is a degree-n “Chebyshev polynomial,” defined recursively by

T0(x) = 1, T1(x) = x , Tn+1(x) = 2xTn(x)− Tn−1(x).

They are orthogonal with repect to the inner product 〈f , g〉 =

∫ 1

−1

f (x)g(x)
√

1− x2
dx .

It can be checked that

〈Tm,Tn〉 =

∫ 1

−1

Tm(x)Tn(x)
√

1− x2
dx =

{
1
2
πδmn m 6= 0, n 6= 0

π m = n = 0

By orthogonality, every function f (x), continuous for −1 < x < 1, can be expressed using
Chebyshev polynomials:

f (x) ∼
∞∑
n=0

cnTn(x), where cn =
〈f , Tn〉
〈Tn, Tn〉

=
2

π
〈f ,Tn〉, if n > 0.
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Chebyshev polynomials (of the first kind)

T0(x) = 1 T4(x) = 8x4 − 8x2 + 1

T1(x) = x T5(x) = 16x5 − 20x3 + 5x

T2(x) = 2x2 − 1 T6(x) = 32x6 − 48x4 + 18x2 − 1

T3(x) = 4x3 − 3x T7(x) = 64x7 − 112x5 + 56x3 − 7x
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Hermite’s differential equation

Consider the following Sturm-Liouville problem on (−∞,∞):

−
d

dx

[
e−x2 d

dx
y
]

= λe−x2
y ,

[
p(x) = e−x2

, q(x) = 0, w(x) = e−x2
]
.

The eigenvalues are λn = 2n for n = 1, 2, . . . , and the eigenfunctions solve Hermite’s
equation:

y ′′ − 2xy ′ + 2ny = 0.

For each n, one solution is a degree-n “Hermite polynomial,” defined by

Hn(x) = (−1)nex
2 dn

dxn
e−x2

=
(

2x −
d

dx

)n
· 1

They are orthogonal with repect to the inner product 〈f , g〉 =

∫ ∞
−∞

f (x)g(x)e−x2
dx .

It can be checked that

〈Hm,Hn〉 =

∫ ∞
−∞

Hm(x)Hn(x)e−x2
dx =

√
π2nn!δmn.

By orthogonality, every function f (x) satisfying
∫∞
−∞ f 2e−x2

dx <∞ can be expressed using
Hermite polynomials:

f (x) ∼
∞∑
n=0

cnHn(x), where cn =
〈f , Hn〉
〈Hn, Hn〉

=
〈f ,Hn〉√
π2nn!

.
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Hermite polynomials

H0(x) = 1 H4(x) = 16x4 − 48x2 + 12

H1(x) = 2x H5(x) = 32x5 − 160x3 + 120x

H2(x) = 4x2 − 2 H6(x) = 64x6 − 480x4 + 720x2 − 120

H3(x) = 8x3 − 12x H7(x) = 128x7 − 1344x5 + 3360x3 − 1680x
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Hermite functions

The Hermite functions can be defined from the Hermite polynomials as

ψn(x) =
(
2nn!
√
π
)− 1

2 e−
x2

2 Hn(x) = (−1)n
(
2nn!
√
π
)− 1

2 e−
x2

2
dn

dxn
e−x2

.

They are orthonormal with respect to the inner product

〈f , g〉 =

∫ ∞
−∞

f (x)g(x) dx .

Every real-valued function f such that
∫∞
−∞ f 2 dx <∞ “can be expressed uniquely” as

f (x) ∼
∞∑
n=0

cnψn(x) dx , where cn = 〈f , ψn〉 =

∫ ∞
−∞

f (x)ψn(x) dx .

These are solutions to the time-independent Schrödinger ODE: −y ′′ + x2y = (2n + 1)y .
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