Lecture 6.5: Self-adjoint differential operators

Matthew Macauley

School of Mathematical \& Statistical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

Overview

In an earlier lecture, we gave examples of orthogonal functions arising from differential equations (ODEs).

The reason why they exist is because they are eigenfunctions of a self-adjoint differential operator.

This is the idea of Sturm-Liouville theory, which we will summarize here.
We will not assume any knowledge about differential equations, other than what they are.

For more detailed information, see my series of lectures on Advanced Engineering Mathematics.

Self-adjointness of the SL operator

Definition

A Sturm-Liouville equation is a 2 nd order ODE of the following form:

$$
-\frac{d}{d x}\left(p(x) y^{\prime}\right)+q(x) y=\lambda w(x) y, \quad \text { where } p(x), q(x), w(x)>0
$$

We are usually interested in solutions $y(x)$ on $[a, b]$, under homogeneous $B C s$:

$$
\begin{array}{ll}
\alpha_{1} y(a)+\alpha_{2} y^{\prime}(a)=0 & \alpha_{1}^{2}+\alpha_{2}^{2}>0 \\
\beta_{1} y(b)+\beta_{2} y^{\prime}(b)=0 & \beta_{1}^{2}+\beta_{2}^{2}>0 .
\end{array}
$$

Together, this BVP is called a Sturm-Liouville (SL) problem.

Remark

Consider the linear differential operator $L=\frac{1}{w(x)}\left(-\frac{d}{d x}\left[p(x) \frac{d}{d x}\right]+q(x)\right)$.

$$
\begin{aligned}
& \mathbb{C}^{\infty}[a, b] \longrightarrow L_{1}=p(x) \frac{d}{d x} \longrightarrow \mathbb{C}^{\infty}[a, b] \xrightarrow{L_{2}=-\frac{1}{w(x)} \frac{d}{d x}+\frac{q(x)}{w(x)}} \longrightarrow \mathbb{C}^{\infty}[a, b] \\
& y \longmapsto p(x) y^{\prime}(x) \longmapsto \\
& \hline w(x) \frac{d}{d x}\left[p(x) y^{\prime}(x)\right]+\frac{q(x)}{w(x)} y(x)
\end{aligned}
$$

An SL equation is just an eigenvalue equation: $L y=\lambda y$, and $L=L_{2} \circ L_{1}$ is self-adjoint!

Main theorem

The SL operator $L=\frac{1}{w(x)}\left(-\frac{d}{d x}\left[p(x) \frac{d}{d x}\right]+q(x)\right)$ is self-adjoint on $\mathcal{C}_{\alpha, \beta}^{\infty}[a, b]$ with respect to the inner product

$$
\langle f, g\rangle=\int_{a}^{b} f(x) \overline{g(x)} w(x) d x
$$

This means that:
(a) The eigenvalues are real and can be ordered so $\lambda_{1}<\lambda_{2}<\lambda_{3}<\cdots \rightarrow \infty$.
(b) Each eigenvalue λ_{i} has a unique (up to scalars) eigenfunction $y_{i}(x)$.
(c) W.r.t. the inner product $\langle f, g\rangle:=\int_{a}^{b} f(x) \overline{g(x)} w(x) d x$, the eigenfunctions form an orthogonal basis on the subspace of functions $\mathcal{C}_{\alpha, \beta}^{\infty}[a, b]$ that satisfy the BCs.

Definition

If $f \in \mathcal{C}_{\alpha, \beta}^{\infty}[a, b]$, then f can be written uniquely as a linear combination of the eigenfunctions. That is,

$$
f(x)=\sum_{n=1}^{\infty} c_{n} y_{n}(x), \quad \text { where } c_{n}=\frac{\left\langle f, y_{n}\right\rangle}{\left\langle y_{n}, y_{n}\right\rangle}=\frac{\int_{a}^{b} f(x) \overline{y_{n}(x)} w(x) d x}{\int_{a}^{b}\left\|y_{n}(x)\right\|^{2} w(x) d x}
$$

This is called a generalized Fourier series with respect to the orthogonal basis $\left\{y_{n}(x)\right\}$ and weighting function $w(x)$.

Fourier series

Dirichlet BCs

$-y^{\prime \prime}=\lambda y, \quad y(0)=0, \quad y(\pi)=0$ is an SL problem with:

- Eigenvalues: $\lambda_{n}=n^{2}, \quad n=1,2,3, \ldots$.
- Eigenfunctions: $y_{n}(x)=\sin (n x)$.

The orthogonality of the eigenvectors means that

$$
\left\langle y_{m}, y_{n}\right\rangle:=\int_{0}^{\pi} y_{m}(x) y_{n}(x) w(x) d x=\int_{0}^{\pi} \sin (m x) \sin (n x) d x= \begin{cases}0 & \text { if } m \neq n \\ \pi / 2 & \text { if } m=n\end{cases}
$$

Note that this means that $\left\|y_{n}\right\|:=\left\langle y_{n}, y_{n}\right\rangle^{1 / 2}=\sqrt{\pi / 2}$.
Fourier series: any function $f(x)$, continuous on $[0, \pi]$ satisfying $f(0)=0, f(\pi)=0$ can be written uniquely as

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \sin n x
$$

where

$$
b_{n}=\frac{\langle f, \sin n x\rangle}{\langle\sin n x, \sin n x\rangle}=\frac{\int_{0}^{\pi} f(x) \sin n x d x}{\|\sin n x\|^{2}}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x
$$

Fourier series

Neumann BCs

$-y^{\prime \prime}=\lambda y, \quad y^{\prime}(0)=0, \quad y^{\prime}(\pi)=0$ is an SL problem with:

- Eigenvalues: $\lambda_{n}=n^{2}, \quad n=0,1,2,3, \ldots$.
- Eigenfunctions: $y_{n}(x)=\cos (n x)$.

The orthogonality of the eigenvectors means that

$$
\left\langle y_{m}, y_{n}\right\rangle:=\int_{0}^{\pi} y_{m}(x) y_{n}(x) w(x) d x=\int_{0}^{\pi} \cos (m x) \cos (n x) d x= \begin{cases}0 & \text { if } m \neq n \\ \pi / 2 & \text { if } m=n>0\end{cases}
$$

Note that this means that $\left\|y_{n}\right\|:=\left\langle y_{n}, y_{n}\right\rangle^{1 / 2}= \begin{cases}\sqrt{\pi / 2} & n>0 \\ \sqrt{\pi} & n=0 .\end{cases}$
Fourier series: any function $f(x)$, continuous on $[0, \pi]$ satisfying $f^{\prime}(0)=0, f^{\prime}(\pi)=0$ can be written uniquely as

$$
f(x)=\sum_{n=0}^{\infty} a_{n} \cos n x
$$

where

$$
a_{n}=\frac{\langle f, \cos n x\rangle}{\langle\cos n x, \cos n x\rangle}=\frac{\int_{0}^{\pi} f(x) \cos n x d x}{\|\cos n x\|^{2}}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x .
$$

More complicated Sturm-Liouville problems

Every 2nd order linear homogeneous ODE, $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$ can be written in self-adjoint or "Sturm-Liouville form":

$$
-\frac{d}{d x}\left(p(x) y^{\prime}\right)+q(x) y=\lambda w(x) y, \quad \text { where } p(x), q(x), w(x)>0
$$

Examples from physics and engineering

- Legendre's equation: $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0$. Used for modeling spherically symmetric potentials in the theory of Newtonian gravitation and in electricity \& magnetism (e.g., the wave equation for an electron in a hydrogen atom).
- Parametric Bessel's equation: $x^{2} y^{\prime \prime}+x y^{\prime}+\left(\lambda x^{2}-\nu^{2}\right) y=0$. Used for analyzing vibrations of a circular drum.
- Chebyshev's equation: $\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+n^{2} y=0$. Arises in numerical analysis techniques.
- Hermite's equation: $y^{\prime \prime}-2 x y^{\prime}+2 n y=0$. Used for modeling simple harmonic oscillators in quantum mechanics.
- Laguerre's equation: $x y^{\prime \prime}+(1-x) y^{\prime}+n y=0$. Arises in a number of equations from quantum mechanics.
- Airy's equation: $y^{\prime \prime}-k^{2} x y=0$. Models the refraction of light.

Legendre's differential equation

Consider the following Sturm-Liouville problem, defined on $(-1,1)$:

$$
-\frac{d}{d x}\left[\left(1-x^{2}\right) \frac{d}{d x} y\right]=\lambda y, \quad\left[p(x)=1-x^{2}, \quad q(x)=0, \quad w(x)=1\right]
$$

The eigenvalues are $\lambda_{n}=n(n+1), n \in \mathbb{N}$, and the eigenfunctions solve Legendre's equation:

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0
$$

For each n, one solution is a degree- n "Legendre polynomial"

$$
P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left[\left(x^{2}-1\right)^{n}\right] .
$$

They are orthogonal with respect to the inner product $\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x$.
It can be checked that

$$
\left\langle P_{m}, P_{n}\right\rangle=\int_{-1}^{1} P_{m}(x) P_{n}(x) d x=\frac{2}{2 n+1} \delta_{m n}
$$

By orthogonality, every function f, continuous on $-1<x<1$, can be expressed using Legendre polynomials:

$$
f(x)=\sum_{n=0}^{\infty} c_{n} P_{n}(x), \quad \text { where } \quad c_{n}=\frac{\left\langle f, P_{n}\right\rangle}{\left\langle P_{n}, P_{n}\right\rangle}=\left(n+\frac{1}{2}\right)\left\langle f, P_{n}\right\rangle
$$

Legendre polynomials

$$
\begin{aligned}
& P_{0}(x)=1 \\
& P_{1}(x)=x \\
& P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right) \\
& P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right) \\
& P_{4}(x)=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right) \\
& P_{5}(x)=\frac{1}{8}\left(63 x^{5}-70 x^{3}+15 x\right) \\
& P_{6}(x)=\frac{1}{8}\left(231 x^{6}-315 x^{4}+105 x^{2}-5\right) \\
& P_{7}(x)=\frac{1}{16}\left(429 x^{7}-693 x^{5}+315 x^{3}-35 x\right)
\end{aligned}
$$

Parametric Bessel's differential equation

Consider the following Sturm-Liouville problem on [0, a]:

$$
-\frac{d}{d x}\left(x y^{\prime}\right)-\frac{\nu^{2}}{x} y=\lambda x y, \quad\left[p(x)=x, \quad q(x)=-\frac{\nu^{2}}{x}, \quad w(x)=x\right] .
$$

For a fixed ν, the eigenvalues are $\lambda_{n}=\omega_{n}^{2}:=\alpha_{n}^{2} / a^{2}$, for $n=1,2, \ldots$.
Here, α_{n} is the $n^{\text {th }}$ positive root of $J_{\nu}(x)$, the Bessel functions of the first kind of order ν.
The eigenfunctions solve the parametric Bessel's equation:

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(\lambda x^{2}-\nu^{2}\right) y=0
$$

Fixing ν, for each n there is a solution $J_{\nu n}(x):=J_{\nu}\left(\omega_{n} x\right)$.
They are orthogonal with repect to the inner product $\langle f, g\rangle=\int_{0}^{a} f(x) g(x) x d x$.
It can be checked that

$$
\left\langle J_{\nu n}, J_{\nu m}\right\rangle=\int_{0}^{a} J_{\nu}\left(\omega_{n} x\right) J_{\nu}\left(\omega_{m} x\right) x d x=0, \quad \text { if } n \neq m
$$

By orthogonality, every continuous function $f(x)$ on $[0, a]$ can be expressed in a "Fourier-Bessel" series:

$$
f(x) \sim \sum_{n=0}^{\infty} c_{n} J_{\nu}\left(\omega_{n} x\right), \quad \text { where } \quad c_{n}=\frac{\left\langle f, J_{\nu n}\right\rangle}{\left\langle J_{\nu n}, J_{\nu n}\right\rangle}
$$

Bessel functions (of the first kind)

$$
J_{\nu}(x)=\sum_{m=0}^{\infty}(-1)^{m} \frac{1}{m!(\nu+m)!}\left(\frac{x}{2}\right)^{2 m+\nu}
$$

Chebyshev's differential equation

Consider the following Sturm-Liouville problem on $[-1,1]$:

$$
-\frac{d}{d x}\left[\sqrt{1-x^{2}} \frac{d}{d x} y\right]=\lambda \frac{1}{\sqrt{1-x^{2}}} y, \quad\left[p(x)=\sqrt{1-x^{2}}, \quad q(x)=0, \quad w(x)=\frac{1}{\sqrt{1-x^{2}}}\right] .
$$

The eigenvalues are $\lambda_{n}=n^{2}$ for $n \in \mathbb{N}$, and the eigenfunctions solve Chebyshev's equation:

$$
\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+n^{2} y=0
$$

For each n, one solution is a degree- n "Chebyshev polynomial," defined recursively by

$$
T_{0}(x)=1, \quad T_{1}(x)=x, \quad T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x)
$$

They are orthogonal with repect to the inner product $\langle f, g\rangle=\int_{-1}^{1} \frac{f(x) g(x)}{\sqrt{1-x^{2}}} d x$.
It can be checked that

$$
\left\langle T_{m}, T_{n}\right\rangle=\int_{-1}^{1} \frac{T_{m}(x) T_{n}(x)}{\sqrt{1-x^{2}}} d x=\left\{\begin{array}{cl}
\frac{1}{2} \pi \delta_{m n} & m \neq 0, n \neq 0 \\
\pi & m=n=0
\end{array}\right.
$$

By orthogonality, every function $f(x)$, continuous for $-1<x<1$, can be expressed using Chebyshev polynomials:

$$
f(x) \sim \sum_{n=0}^{\infty} c_{n} T_{n}(x), \quad \text { where } \quad c_{n}=\frac{\left\langle f, T_{n}\right\rangle}{\left\langle T_{n}, T_{n}\right\rangle}=\frac{2}{\pi}\left\langle f, T_{n}\right\rangle, \text { if } n>0
$$

Chebyshev polynomials (of the first kind)

$$
\begin{array}{ll}
T_{0}(x)=1 & T_{4}(x)=8 x^{4}-8 x^{2}+1 \\
T_{1}(x)=x & T_{5}(x)=16 x^{5}-20 x^{3}+5 x \\
T_{2}(x)=2 x^{2}-1 & T_{6}(x)=32 x^{6}-48 x^{4}+18 x^{2}-1 \\
T_{3}(x)=4 x^{3}-3 x & T_{7}(x)=64 x^{7}-112 x^{5}+56 x^{3}-7 x
\end{array}
$$

Hermite's differential equation

Consider the following Sturm-Liouville problem on $(-\infty, \infty)$:

$$
-\frac{d}{d x}\left[e^{-x^{2}} \frac{d}{d x} y\right]=\lambda e^{-x^{2}} y, \quad\left[p(x)=e^{-x^{2}}, \quad q(x)=0, \quad w(x)=e^{-x^{2}}\right]
$$

The eigenvalues are $\lambda_{n}=2 n$ for $n=1,2, \ldots$, and the eigenfunctions solve Hermite's equation:

$$
y^{\prime \prime}-2 x y^{\prime}+2 n y=0
$$

For each n, one solution is a degree- n "Hermite polynomial," defined by

$$
H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}} e^{-x^{2}}=\left(2 x-\frac{d}{d x}\right)^{n} \cdot 1
$$

They are orthogonal with repect to the inner product $\langle f, g\rangle=\int_{-\infty}^{\infty} f(x) g(x) e^{-x^{2}} d x$.
It can be checked that

$$
\left\langle H_{m}, H_{n}\right\rangle=\int_{-\infty}^{\infty} H_{m}(x) H_{n}(x) e^{-x^{2}} d x=\sqrt{\pi} 2^{n} n!\delta_{m n}
$$

By orthogonality, every function $f(x)$ satisfying $\int_{-\infty}^{\infty} f^{2} e^{-x^{2}} d x<\infty$ can be expressed using Hermite polynomials:

$$
f(x) \sim \sum_{n=0}^{\infty} c_{n} H_{n}(x), \quad \text { where } \quad c_{n}=\frac{\left\langle f, H_{n}\right\rangle}{\left\langle H_{n}, H_{n}\right\rangle}=\frac{\left\langle f, H_{n}\right\rangle}{\sqrt{\pi} 2^{n} n!}
$$

Hermite polynomials

$$
\begin{array}{ll}
H_{0}(x)=1 & H_{4}(x)=16 x^{4}-48 x^{2}+12 \\
H_{1}(x)=2 x & H_{5}(x)=32 x^{5}-160 x^{3}+120 x \\
H_{2}(x)=4 x^{2}-2 & H_{6}(x)=64 x^{6}-480 x^{4}+720 x^{2}-120 \\
H_{3}(x)=8 x^{3}-12 x & H_{7}(x)=128 x^{7}-1344 x^{5}+3360 x^{3}-1680 x
\end{array}
$$

Hermite (physicists') Polynomials

Hermite functions

The Hermite functions can be defined from the Hermite polynomials as

$$
\psi_{n}(x)=\left(2^{n} n!\sqrt{\pi}\right)^{-\frac{1}{2}} e^{-\frac{x^{2}}{2}} H_{n}(x)=(-1)^{n}\left(2^{n} n!\sqrt{\pi}\right)^{-\frac{1}{2}} e^{-\frac{x^{2}}{2}} \frac{d^{n}}{d x^{n}} e^{-x^{2}}
$$

They are orthonormal with respect to the inner product

$$
\langle f, g\rangle=\int_{-\infty}^{\infty} f(x) g(x) d x
$$

Every real-valued function f such that $\int_{-\infty}^{\infty} f^{2} d x<\infty$ "can be expressed uniquely" as

$$
f(x) \sim \sum_{n=0}^{\infty} c_{n} \psi_{n}(x) d x, \quad \text { where } c_{n}=\left\langle f, \psi_{n}\right\rangle=\int_{-\infty}^{\infty} f(x) \psi_{n}(x) d x
$$

These are solutions to the time-independent Schrödinger ODE: $-y^{\prime \prime}+x^{2} y=(2 n+1) y$.

