Lecture 7.1: Definiteness and indefiniteness

Matthew Macauley

School of Mathematical & Statistical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

Basic concepts, and relation to eigenvalues

Definition

A self-adjoint map $M: X \to X$ is positive-definite (or positive) if

(x, Mx) > 0, for all $x \neq 0,$

and positive semi-definite (or nonnegative) if

 $(x, Mx) \ge 0,$ for all $x \ne 0,$

We denote these as M > 0 and $M \ge 0$, respectively.

Proposition 7.1

A self-adjoint map $M \colon X \to X$ is

(i) positive if and only if all eigenvalues of M are positive,

(ii) non-negative if and only if all eigenvalues of M are nonnegative.

We can define what it means for M to be negative, or non-positive, analogously.

A matrix that is none of these is said to be indefinite.

Basic properties of positive maps

Proposition 7.2

- Let X be an inner product space, and $M, N, Q \in Hom(X, X)$.
 - (i) If M, N > 0, then M + N > 0 and aM > 0 for a > 0.
 - (ii) If M > 0 and Q invertible, then $Q^*MQ > 0$.
- (iii) Every positive map has a unique positive square root.

The topology of positive maps

In an inner product space, the ball of radius r > 0 centered at $x \in X$ is

$$B_r(x) = \{y \in X : ||x - y|| < r\}.$$

Let $U \subseteq X$ be a subset. Then

- a point $u \in U$ is interior if there is some $\epsilon > 0$ for which $B_{\epsilon}(u) \subseteq U$,
- the set U is open if every $u \in U$ is interior,
- its closure consists of *U* and its limit points.

Proposition 7.3

Let X be an inner product space, and consider the vector space of self-adjoint maps of X.

- (i) The subset of positive maps is open.
- (ii) The closure of this set are the non-negative maps.