Lecture 7.1: Definiteness and indefiniteness

Matthew Macauley

School of Mathematical \& Statistical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

Basic concepts, and relation to eigenvalues

Definition

A self-adjoint map $M: X \rightarrow X$ is positive-definite (or positive) if

$$
(x, M x)>0, \quad \text { for all } x \neq 0
$$

and positive semi-definite (or nonnegative) if

$$
(x, M x) \geq 0, \quad \text { for all } x \neq 0
$$

We denote these as $M>0$ and $M \geq 0$, respectively.

Proposition 7.1

A self-adjoint map $M: X \rightarrow X$ is
(i) positive if and only if all eigenvalues of M are positive,
(ii) non-negative if and only if all eigenvalues of M are nonnegative.

We can define what it means for M to be negative, or non-positive, analogously.
A matrix that is none of these is said to be indefinite.

Basic properties of positive maps

Proposition 7.2

Let X be an inner product space, and $M, N, Q \in \operatorname{Hom}(X, X)$.
(i) If $M, N>0$, then $M+N>0$ and $a M>0$ for $a>0$.
(ii) If $M>0$ and Q invertible, then $Q^{*} M Q>0$.
(iii) Every positive map has a unique positive square root.

The topology of positive maps

In an inner product space, the ball of radius $r>0$ centered at $x \in X$ is

$$
B_{r}(x)=\{y \in X:\|x-y\|<r\} .
$$

Let $U \subseteq X$ be a subset. Then

- a point $u \in U$ is interior if there is some $\epsilon>0$ for which $B_{\epsilon}(u) \subseteq U$,
- the set U is open if every $u \in U$ is interior,
- its closure consists of U and its limit points.

Proposition 7.3

Let X be an inner product space, and consider the vector space of self-adjoint maps of X.
(i) The subset of positive maps is open.
(ii) The closure of this set are the non-negative maps.

