Lecture 7.2: Nonstandard inner products and Gram matrices

Matthew Macauley

School of Mathematical \& Statistical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

The matrix $A^{T} A$

Consider an $n \times m$ matrix A over \mathbb{R}, where

$$
A=\left[\begin{array}{lll}
x_{1} & \cdots & x_{m}
\end{array}\right] .
$$

The $m \times m$ matrix $A^{T} A$ is self-adjoint:

$$
A^{T} A=\left[\begin{array}{cccc}
x_{1}^{T} x_{1} & x_{1}^{T} x_{2} & \cdots & x_{1}^{T} x_{m} \\
x_{2}^{T} x_{1} & x_{2}^{T} x_{2} & \cdots & x_{2}^{T} x_{m} \\
\vdots & \vdots & \ddots & \vdots \\
x_{m}^{T} x_{1} & x_{m}^{T} x_{2} & \cdots & x_{m}^{T} x_{m}
\end{array}\right] \text {. }
$$

Note that $A: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ and $A^{T} A: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$. We've already seen that:

1. rank $A=\operatorname{rank} A^{T} A$ and nullity $A=$ nullity $A^{T} A \quad$ (in fact, $N_{A}=N_{A^{T} A}$),
2. $A^{T} A \geq 0$, and $A^{T} A>0$ if x_{1}, \ldots, x_{m} are linearly independent,
3. If $N_{A}=0$, then the projection matrix onto $\operatorname{Span}\left(x_{1}, \ldots, x_{m}\right)$ is $A\left(A^{T} A\right)^{-1} A^{T}$.

Later, we'll diagonalize $A^{T} A$ to get the celebrated singular value decomposition of A.

Gram matrices

Now, we'll generalize the construction of $A^{T} A$, the "matrix of dot products."
We'll see that every positive matrix is a "matrix of inner products."

Definition

Let $x_{1}, \ldots, x_{m} \in X$, with inner product $($,$) . The Gram matrix of these vectors is$

$$
G=\left(G_{i j}\right), \quad \text { where } \quad G_{i, j}=\left(x_{i}, x_{j}\right) .
$$

Notice that $G=A^{*} A$, where $A=\left[\begin{array}{lll}x_{1} & \cdots & x_{m}\end{array}\right]$.

Theorem 7.6

1. Every Gram matrix is nonnegative.
2. The Gram matrix of a set of linearly independent vectors is positive.
3. Every positive matrix is a Gram matrix.

Other examples of Gram matrices

1. Let $X=\{f:[0,1] \rightarrow \mathbb{R}\}$, where $(f, g)=\int_{0}^{1} f(t) g(t) d t$. If

$$
f_{1}=1, \quad f_{2}=t, \quad \ldots, \quad f_{m}=t^{m-1}
$$

then the Gram matrix is $G=\left(G_{i j}\right)$, where

$$
G_{i j}=\frac{1}{i+j-1} .
$$

2. Consider $X=\{f:[0,2 \pi] \rightarrow \mathbb{C}\}$ and a "weighting function" $w:[0,2 \pi] \rightarrow \mathbb{R}^{+}$, define

$$
(f, g)=\int_{0}^{2 \pi} f(\theta) \overline{g(\theta)} w(\theta) d \theta
$$

If $f_{j}=e^{i j \theta}$, for $j=-n, \ldots, n$, then the $(2 n+1) \times(2 n+1)$ Gram matrix is $G=\left(G_{k j}\right)=\left(c_{k-j}\right)$, where

$$
c_{\omega}=\int_{0}^{2 \pi} w(\theta) e^{-i \omega \theta} d \theta
$$

New inner products from old

Let X be a vector space with inner product (\cdot, \cdot).
A positive map $M>0$ defines a nonstandard inner product $\langle\cdot, \cdot\rangle$, where

$$
\langle x, y\rangle:=(x, M y)
$$

Lemma 7.4 (HW)

If $H, M: X \rightarrow X$ are self-adjoint and $M>0$, then $M^{-1} H$ is self-adjoint with respect to the inner product $\langle x, y\rangle=(x, M y)$.

Definition

If $H, M: X \rightarrow X$ are self-adjoint and $M>0$, the generalized Rayleigh quotient is

$$
R_{H, M}(x)=\frac{(x, H x)}{(x, M x)}=\frac{\left(x, M M^{-1} H x\right)}{(x, M x)}=\frac{\left\langle x, M^{-1} H x\right\rangle}{\langle x, x\rangle}:=R_{M^{-1} H}\langle x\rangle \quad \text { w.r.t. }\langle,\rangle .
$$

Note that:

- the ordinary Rayleigh quotient is simply $R_{H}=R_{H, I}$.
- the generalized Rayleigh quotient is an ordinary Rayley quotient.

The generalized Rayleigh quotient

Key remark

Results on the generalized Rayleigh quotient $R_{H, M}(x)$ follow from interpreting results of the ordinary Rayleigh quotient to

$$
R_{M^{-1} H}\langle x\rangle:=\frac{\left\langle x, M^{-1} H x\right\rangle}{\langle x, x\rangle}=\frac{(x, H x)}{(x, M x)}=R_{H, M}(x) .
$$

For example, the minimum value of the Rayleigh quotient is the smallest eigenvalue of H :

$$
R_{H}\left(v_{1}\right)=\lambda_{1}, \quad \text { where } H v_{1}=\lambda_{1} v_{1} .
$$

The minimum value of the generalized Rayleigh quotient is the smallest eigenvalue of $M^{-1} \mathrm{H}$:

$$
R_{H, M}\left(v_{1}\right)=R_{M^{-1} H}\left\langle w_{1}\right\rangle=\mu_{1}, \quad \text { where } M^{-1} H w_{1}=\mu_{1} w_{1} .
$$

Now, w.r.t. the inner product \langle,\rangle , let

$$
X_{1}:=\operatorname{Span}\left(v_{1}\right)^{\perp}, \quad \text { and so } \quad X=X_{1} \oplus \operatorname{Span}\left(v_{1}\right), \quad \operatorname{dim} X_{1}=n-1
$$

The minimum value of the generalized Rayleigh quotient on X_{1} is

$$
\mu_{2}=\min _{\|x\|=1}\left\{R_{M^{-1} H}\langle x\rangle \mid\left\langle x, v_{1}\right\rangle=0\right\}=\min _{\|x \mid\|=1}\left\{R_{H, M}(x) \mid\left(x, M v_{1}\right)=0\right\}
$$

where $M^{-1} H w_{2}=\mu_{2} w_{2}$, and μ_{2} is the 2 nd smallest eigenvalue of $M^{-1} H$.

The min-max principle for the generalized Rayleigh quotient

Theorem 6.8 (recall)

Let $H: X \rightarrow X$ be self-adjoint with eigenvalues $\lambda_{1} \leq \cdots \leq \lambda_{n}$. Then

$$
\lambda_{k}=\min _{\operatorname{dim} S=k}\left\{\max _{x \in S \backslash 0} R_{H}(x)\right\} .
$$

Proposition 7.5 (HW)

Let $H, M: X \rightarrow X$ be self-adjoint and $M>0$.

1. Show that there exists a basis v_{1}, \ldots, v_{n} of X where each v_{i} satisfies

$$
H v_{i}=\mu_{i} M v_{i} \quad\left(\mu_{i} \text { real }\right), \quad\left(v_{i}, M v_{j}\right)= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

2. Compute $\left(v_{i}, H v_{j}\right)$, and show that there is an invertible matrix U for which $U^{*} M U=I$ and $U^{*} H U$ is diagonal.
3. Characterize the numbers $\mu_{1}, \ldots \mu_{n}$ by a minimax principle.

The Hadamard product of matrices

Let $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ be matrices of the same size. The Hadamard product of A and B is defined as

$$
A \circ B:=\left(a_{i j} b_{i j}\right) .
$$

Schur's product theorem
If $A, B>0$, then so is $A \circ B$.

