Lecture 7.2: Nonstandard inner products and Gram matrices

Matthew Macauley

School of Mathematical & Statistical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

The matrix $A^T A$

Consider an $n \times m$ matrix A over \mathbb{R} , where

$$A=\begin{bmatrix} x_1 \cdots x_m\end{bmatrix}.$$

The $m \times m$ matrix $A^T A$ is self-adjoint:

$$A^{T}A = \begin{bmatrix} x_{1}^{T}x_{1} & x_{1}^{T}x_{2} & \cdots & x_{1}^{T}x_{m} \\ x_{2}^{T}x_{1} & x_{2}^{T}x_{2} & \cdots & x_{2}^{T}x_{m} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m}^{T}x_{1} & x_{m}^{T}x_{2} & \cdots & x_{m}^{T}x_{m} \end{bmatrix}$$

Note that $A: \mathbb{R}^m \to \mathbb{R}^n$ and $A^T A: \mathbb{R}^m \to \mathbb{R}^m$. We've already seen that:

- 1. rank $A = \operatorname{rank} A^T A$ and nullity $A = \operatorname{nullity} A^T A$ (in fact, $N_A = N_{A^T A}$),
- 2. $A^T A \ge 0$, and $A^T A > 0$ if x_1, \ldots, x_m are linearly independent,
- 3. If $N_A = 0$, then the projection matrix onto $\text{Span}(x_1, \dots, x_m)$ is $A(A^T A)^{-1} A^T$.

Later, we'll diagonalize $A^T A$ to get the celebrated singular value decomposition of A.

Gram matrices

Now, we'll generalize the construction of $A^T A$, the "matrix of dot products."

We'll see that every positive matrix is a "matrix of inner products."

Definition

Let $x_1, \ldots, x_m \in X$, with inner product (,). The Gram matrix of these vectors is

 $G = (G_{ij}),$ where $G_{i,j} = (x_i, x_j).$

Notice that $G = A^*A$, where $A = [x_1 \cdots x_m]$.

Theorem 7.6

- 1. Every Gram matrix is nonnegative.
- 2. The Gram matrix of a set of linearly independent vectors is positive.
- 3. Every positive matrix is a Gram matrix.

Other examples of Gram matrices

1. Let
$$X = \{f : [0,1] \to \mathbb{R}\}$$
, where $(f,g) = \int_0^1 f(t)g(t) dt$. If
 $f_1 = 1, \quad f_2 = t, \quad \dots, \quad f_m = t^{m-1},$

then the Gram matrix is $G = (G_{ij})$, where

$$G_{ij}=rac{1}{i+j-1}.$$

2. Consider $X = \{f : [0, 2\pi] \to \mathbb{C}\}$ and a "weighting function" $w : [0, 2\pi] \to \mathbb{R}^+$, define

$$(f,g) = \int_0^{2\pi} f(\theta) \overline{g(\theta)} w(\theta) d\theta.$$

If $f_j = e^{ij\theta}$, for $j = -n, \ldots, n$, then the $(2n + 1) \times (2n + 1)$ Gram matrix is $G = (G_{kj}) = (c_{k-j})$, where

$$c_\omega = \int_0^{2\pi} w(heta) e^{-i\omega heta} d heta.$$

New inner products from old

Let X be a vector space with inner product (\cdot, \cdot) .

A positive map M > 0 defines a nonstandard inner product $\langle \cdot, \cdot \rangle$, where

 $\langle x, y \rangle := (x, My).$

Lemma 7.4 (HW)

If $H, M: X \to X$ are self-adjoint and M > 0, then $M^{-1}H$ is self-adjoint with respect to the inner product $\langle x, y \rangle = (x, My)$.

Definition

If $H, M: X \to X$ are self-adjoint and M > 0, the generalized Rayleigh quotient is

$$R_{H,M}(x) = \frac{(x,Hx)}{(x,Mx)} = \frac{(x,MM^{-1}Hx)}{(x,Mx)} = \frac{\langle x,M^{-1}Hx \rangle}{\langle x,x \rangle} := R_{M^{-1}H}\langle x \rangle \quad \text{w.r.t. } \langle x,y \rangle.$$

Note that:

- the ordinary Rayleigh quotient is simply $R_H = R_{H,I}$.
- the generalized Rayleigh quotient is an ordinary Rayley quotient.

M. Macauley (Clemson)

The generalized Rayleigh quotient

Key remark

Results on the generalized Rayleigh quotient $R_{H,M}(x)$ follow from interpreting results of the ordinary Rayleigh quotient to

$$R_{M^{-1}H}\langle x\rangle := \frac{\langle x, M^{-1}Hx\rangle}{\langle x, x\rangle} = \frac{(x, Hx)}{(x, Mx)} = R_{H,M}(x).$$

For example, the minimum value of the Rayleigh quotient is the smallest eigenvalue of H:

$$R_H(v_1) = \lambda_1,$$
 where $Hv_1 = \lambda_1 v_1.$

The minimum value of the generalized Rayleigh quotient is the smallest eigenvalue of $M^{-1}H$:

$$R_{H,M}(v_1)=R_{M^{-1}H}\langle w_1
angle=\mu_1,\qquad$$
 where $M^{-1}Hw_1=\mu_1w_1.$

Now, w.r.t. the inner product \langle , \rangle , let

$$X_1 := \operatorname{Span}(v_1)^{\perp}$$
, and so $X = X_1 \oplus \operatorname{Span}(v_1)$, dim $X_1 = n - 1$.

The minimum value of the generalized Rayleigh quotient on X_1 is

$$\mu_{2} = \min_{||x||=1} \left\{ R_{M^{-1}H} \langle x \rangle \mid \langle x, v_{1} \rangle = 0 \right\} = \min_{||x|||=1} \left\{ R_{H,M}(x) \mid (x, Mv_{1}) = 0 \right\}$$

where $M^{-1}Hw_2 = \mu_2 w_2$, and μ_2 is the 2nd smallest eigenvalue of $M^{-1}H$.

The min-max principle for the generalized Rayleigh quotient

Theorem 6.8 (recall)

Let $H: X \to X$ be self-adjoint with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$. Then

$$\lambda_k = \min_{\dim S=k} \left\{ \max_{x \in S \setminus 0} R_H(x) \right\}.$$

Proposition 7.5 (HW)

Let $H, M: X \to X$ be self-adjoint and M > 0.

1. Show that there exists a basis v_1, \ldots, v_n of X where each v_i satisfies

$$Hv_i = \mu_i Mv_i$$
 (μ_i real), (v_i, Mv_j) =
 $\begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$

- 2. Compute (v_i, Hv_j) , and show that there is an invertible matrix U for which $U^*MU = I$ and U^*HU is diagonal.
- 3. Characterize the numbers μ_1, \ldots, μ_n by a minimax principle.

The Hadamard product of matrices

Let $A = (a_{ij})$ and $B = (b_{ij})$ be matrices of the same size. The Hadamard product of A and B is defined as

 $A \circ B := (a_{ij}b_{ij}).$

Schur's product theorem

If A, B > 0, then so is $A \circ B$.