Lecture 7.5: The partial order of positive maps

Matthew Macauley

School of Mathematical \& Statistical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

Partially ordered sets

Recall that a partial order on a set X is a relation \leq that is:
(i) reflexive: $x \leq x$
(ii) anti-symmetric: $x \leq y$ and $y \leq x \Rightarrow x=y$
(iii) transitive: $x \leq y \leq z \Rightarrow x \leq z$.

We say that $x<y$ if $x \leq y$ and $x \neq y$. The pair (X, \leq) is a partially ordered set (poset).
Alternatively, we can define a partial order by a relation $<$ that is
(i) reflexive: $x \not \leq x$
(ii) anti-symmetric: $x<y \Rightarrow y \nless x$
(iii) transitive: $x<y<z \Rightarrow x<z$.

Definition

Put a following partial order on the set of self-adjoint maps:

$$
M<N \quad \text { iff } \quad N-M>0, \quad M \leq N \quad \text { iff } \quad N-M \geq 0 .
$$

Basic properties of the poset of positive maps

The following easy facts all hold for positive numbers:
(i) If $m_{1}<n_{1}$ and $m_{2}<n_{2}$, then $m_{1}+m_{2}<n_{1}+n_{2}$.
(ii) If $\ell<m<n$, then $\ell<n$.
(iii) If $m<n$ and $a>0$, then $a m<a n$
(iv) If $0<m<n$, then $1 / m>1 / n>0$.

Proposition 7.9

The following all hold for linear maps on X :
(i) If $M_{1}<M_{1}$ and $M_{2}<N_{2}$, then $M_{1}+M_{2}<N_{1}+N_{2}$.
(ii) If $L<M<N$, then $L<N$.
(iii) Given maps $M<N$ and a scalar $a>0$, we have $a M<a N$.
(iv) If $0<M<N$, then $M^{-1}>N^{-1}>0$.

The symmetrized product

Definition

If $A, B: X \rightarrow X$ are self-adjoint, their symmetrized product is

$$
S=A B+B A .
$$

Proposition 7.10

Let A, B be self-adjoint. If $A>0$ and $A B+B A>0$, then $B>0$.

