Math 4120, Midterm 1. March 2, 2022

Write your answers for these problems *directly on this paper*. You should be able to fit them in the space given.

- 1. (10 points) Let G be a group with a subgroup $H = \langle b, c \rangle$. Be as specific as possible with your answers.
 - (a) If $a \in H$, then what is $\langle a, b, c \rangle$?
 - (b) If $a \notin H$ and [G:H] = 2, then what is $\langle a, b, c \rangle$?
 - (c) If $a \notin H$, and |G| = 48 and |H| = 6, what are the possible orders of the subgroup $\langle a, b, c \rangle$?
- 2. (12 points) Answer the following questions about the second smallest nonabelian simple group, $G = \operatorname{GL}_3(\mathbb{Z}_2)$, whose reduced subgroup lattice is shown below. Each justification should only be 1 senetence.

- (a) Which subgroups of G are normal?
- (b) Consider an element $x \in G$ of order |x| = 3, and let $H = \langle x \rangle$. What is the normalizer $N_G(H)$ isomorphic to? Explain how you know this.
- (c) Circle the *fully unnormal* subgroups. How can you identify them?
- (d) Box the *moderately unnormal* subgroups. How can you identify them?
- (e) Explain why the *center*, Z(G), cannot be equal to G.
- (f) Which subgroup is the center? Justify your answer.
- 3. (10 points) Make a list of all abelian groups of order $48 = 2^4 \cdot 3$. That is, every abelian group of order 48 should be isomorphic to precisely <u>one</u> group on your list. Write, e.g., $C_2^2 := C_2 \times C_2$ for short.

4. (24 points) Consider the Cayley diagram of the group $G = \langle r, s \rangle$ shown below, twice.

- (a) Write a presentation for this group.
- (b) Find all left cosets of $H = \langle r \rangle$, and then find all right cosets. Write them as subsets, or you can describe them in words, if applicable (e.g., the columns, the rows, etc.).
- (c) Find all left cosets of $K = \langle s \rangle$, and then find all right cosets. Write them as subsets, or you can describe them in words, if applicable.
- (d) Is H normal, moderately unnormal, or fully unnormal?
- (e) Is K normal, moderately unnormal, or fully unnormal?
- (f) Find the normalizers of H and K. Write them by generator(s), and say what familiar group each is isomorphic to.
- (g) Find all conjugate subgroups to H and K. Write each group by generator(s).
- (h) What is the order of the element rs^2 ?
- (i) There are three nonabelian groups of order 20: D₁₀, Dic₁₀, and AGL₁(ℤ₅). Which one is this? Justify your answer.

5. (10 points) Draw the cycle diagram (not the Cayley diagram) of the group

$$\mathbb{Z}_5 \times \mathbb{Z}_2 = \{(a, b) \mid a \in \mathbb{Z}_5, b \in \mathbb{Z}_2\}.$$

and then construct the subgroup lattice. Find two *minimal* generating sets of different sizes. Write your elements as ordered pairs (a, b), or as length-2 strings ab.

- 6. (16 points) Give an example of each of the following. No justification needed.
 - (a) Two minimal generating sets of S_5 of different sizes.
 - (b) A nonabelian group such that every subgroup is normal.
 - (c) An element in S_5 of order 6. Use cycle notation.
 - (d) An element in A_5 of order 2. Use cycle notation.
 - (e) An infinite *noncyclic* abelian group.
 - (f) A group G of order 16 such that $g^2 = e$ for all $g \in G$.
 - (g) Two nonisomorphic subgroups of $D_4 = \langle r, f \rangle$ of the same order. (Write by generator(s)).
 - (h) A subgroup $H \leq G$ and element $x \in G$ for which xH = Hx holds setwise, despite xh = hx not holding for all individual elements $h \in H$.

7. (10 points) Recall that the *center* of G is the set of elements that commute with everything:

$$Z(G) := \{ z \in G \mid gz = zg, \text{ for all } g \in G \}.$$

Use the standard (three-step) subgroup test to show that Z(G) is a subgroup. Then show it is normal.

8. (8 points) Suppose that $N \leq G$ is a subgroup of index [G:N] = 2. Show that N is normal.