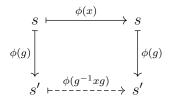
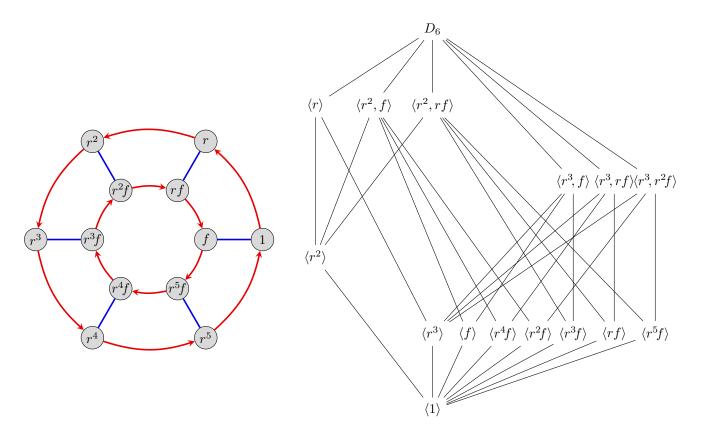
1. Consider the right action of $G = D_6 = \langle r, f \rangle$ on following set of 31 "binary hexagons," where r rotates each one 60° counterclockwise, and f flips each one horizontally (i.e., across a vertical axis).

- (a) Draw the action diagram.
- (b) Construct the "fixed point table", which has a checkmark in row g and column s if $\phi(g).s=s$.
- (c) Next to each $s \in S$ on your action diagram, write $\operatorname{stab}(s)$, the stabilizer subgroup, using its generators. Which subgroups of D_6 don't appear, and why?
- (d) The fixed point set fix(g) of each $g \in D_6$ can be read off of the the fixed point table. What is the average size |fix(g)|?
- (e) Find $Ker(\phi)$ and $Fix(\phi)$.
- (f) Repeat the previous parts of this problem, but for the action of $G = D_3 = \langle r, f \rangle$ on S, where r rotates each hexagon 120° counterclockwise.
- 2. Suppose that G acts on S via the homomorphism $\phi: G \to \operatorname{Perm}(S)$.
 - (a) Show that $\operatorname{stab}(s)$ is a subgroup for all $s \in S$. Use the notational conventions that we have been using in lecture.
 - (b) Show that the stablizers of any two elements in the same orbit are conjugate specifically, that $\operatorname{stab}(s,\phi(g)) = g^{-1}\operatorname{stab}(s)g$ for all $g \in G$ and $s \in S$. This relationship is summarized by the following commutative diagram.



- 3. Suppose a group G of order 55 acts on a set S of size 14. Let $s \in S$ be an arbitrary element.
 - (a) What are the possible sizes of the orbit of s?
 - (b) What are the possible sizes of the stabilizer of s?
 - (c) Show that this action must have a fixed point.
 - (d) What is the fewest number of fixed points that this action can have? Justify your answer.
- 4. Let $G = D_6 = \langle r, f \rangle$ act on its set $S = \{H \leq D_6\}$ of subgroups by conjugation, i.e., $\phi \colon G \longrightarrow \operatorname{Perm}(S)$, $\phi(g) = \operatorname{the permutation that sends each } H \mapsto g^{-1}Hg$.

A Cayley diagram for D_6 and its subgroup lattice are shown below.



- (a) Construct the action diagram, and superimpose it on the subgroup lattice.
- (b) Construct the fixed point table.
- (c) Find stab(H) for each subgroup $H \leq D_6$, and fix(g) for each $g \in D_6$.
- (d) Find $Ker(\phi)$ and $Fix(\phi)$.
- (e) Interpret $\operatorname{orb}(H)$, $\operatorname{stab}(H)$, $[G:\operatorname{stab}(H)]$, $\operatorname{Fix}(\phi)$, $\operatorname{Ker}(\phi)$, $\operatorname{fix}(g)$, and the average size of $|\operatorname{fix}(g)|$ in terms of familiar algebraic objects.