1. In this problem, we will explore the actions of the dicyclic group Dic_{6} and its automorphism group on itself and its subgroups by conjugation. A Cayley diagram, subgroup lattice, and conjugacy classes are shown below.

$\langle 1\rangle$
(a) The right action of Dic_{6} on itself by conjugation is defined by the homomorphism

$$
\phi: \operatorname{Dic}_{6} \longrightarrow \operatorname{Perm}(S), \quad \phi(g)=\text { the permutation that sends each } x \mapsto g^{-1} x g .
$$

Draw the action diagram and construct the fixed point table. Find $\operatorname{stab}(s)$ for each $s \in S$, $\operatorname{fix}(g)$ for each $g \in G$, as well as $\operatorname{Ker}(\phi)$ and $\operatorname{Fix}(\phi)$.
(b) The inner automorphism group

$$
\operatorname{Inn}\left(\operatorname{Dic}_{6}\right) \cong \operatorname{Dic}_{6} / Z\left(\operatorname{Dic}_{6}\right)=\operatorname{Dic}_{6} /\left\langle r^{3}\right\rangle \cong D_{3}
$$

acts on Dic_{6}, and the action diagram is the same as the one in Part (a). Construct the fixed point table of this action and find $\operatorname{stab}(s), \operatorname{fix}(g), \operatorname{Ker}(\phi)$ and $\operatorname{Fix}(\phi)$. Then draw the subgroup lattice of $\operatorname{Inn}\left(\operatorname{Dic}_{6}\right)=\left\langle\varphi_{r}, \varphi_{s}\right\rangle$, where $\varphi_{g}: x \mapsto g^{-1} x g$.
(c) The automorphism group of Dic_{6} is $\operatorname{Aut}\left(\operatorname{Dic}_{6}\right)=\left\langle\varphi_{r}, \varphi_{s}, \alpha\right\rangle$, where α is the outer automorphism defined by

$$
\alpha: \operatorname{Dic}_{6} \longrightarrow \operatorname{Dic}_{6}, \quad \alpha(r)=r, \quad \alpha(s)=s^{-1}=r^{3} s,
$$

that "reverses" the blue arrows. Construct the action diagram, fixed point table, and find $\operatorname{stab}(s), \operatorname{fix}(g), \operatorname{Ker}(\phi)$ and $\operatorname{Fix}(\phi)$.
(d) What familiar group is $\operatorname{Aut}\left(\operatorname{Dic}_{6}\right)=\left\langle\varphi_{r}, \varphi_{s}, \alpha\right\rangle$ isomorphic to? Construct a Cayley diagram and subgroup lattice.
(e) The group $\operatorname{Aut}\left(\operatorname{Dic}_{6}\right)$ also acts on the conjugacy classes of Dic_{6}. Construct the action diagram, fixed point table, and find $\operatorname{stab}(s)$, fix $(g), \operatorname{Ker}(\phi)$ and $\operatorname{Fix}(\phi)$.
(f) The group Dic_{6} acts on its subgroups by conjugation, via the homomorphism

$$
\phi: \operatorname{Dic}_{6} \longrightarrow \operatorname{Perm}(S), \quad \phi(g)=\text { the permutation that sends each } H \mapsto g^{-1} H g .
$$

Construct the action diagram superimposed on the subgroup lattice. Then construct the fixed point table and find $\operatorname{stab}(s), \operatorname{fix}(g), \operatorname{Ker}(\phi)$ and $\operatorname{Fix}(\phi)$.
2. Carry out the following steps for the groups $C_{7} \rtimes C_{3}$ and $C_{9} \rtimes C_{3}$, whose Cayley diagrams are shown below.

(a) Let G act on its subgroups by conjugation. Draw the action diagram superimposed on the subgroup lattice. Construct the fixed point table, and find $\operatorname{stab}(H)$ for each $H \leq G, \operatorname{Ker}(\phi)$ and $\operatorname{Fix}(\phi)$. Which collections of subgroups arise as fix (g) for some $g \in G$, and why?
(b) Let G act on the right cosets of $H=\langle s\rangle$, via the homomorphism

$$
\phi: G \longrightarrow \operatorname{Perm}(S), \quad \phi(g)=\text { the permutation that sends each } H x \mapsto H x g .
$$

Construct the action diagram, fixed point table, and find $\operatorname{stab}(H x)$ for each right coset, $\operatorname{Ker}(\phi)$ and $\operatorname{Fix}(\phi)$. Which subsets of S arise as fix (g) for some $g \in G$, and why?
3. Let G be a group, not necessarily finite, and let A and B be subgroups of finite index, but not necessarily normal (in particular, we cannot assume that $A B$ is a group).
(a) Show that even if $A B$ is not a group, it is a disjoint union of cosets of A.
(b) Let B act on $S=A B / A=\{A x \mid x \in A B\}$ via the homomorphism

$$
\phi: G \longrightarrow \operatorname{Perm}(S), \quad \phi(g)=\text { the permutation that sends each } A x \mapsto A x g .
$$

Show that there is only one orbit.
(c) Use the orbit-stabilizer theorem to show that $[A: A \cap B]=[A B: B]$.
(d) Show that $[G: A \cap B] \leq[G: A][G: B]$. Give an explicit example of where the inequality is strict.
(e) Show that there is some $N \unlhd G$ contained in both A and B with $[G: N] \leq \infty$.

