1. In this problem, we will explore the actions of the dicyclic group  $\text{Dic}_6$  and its automorphism group on itself and its subgroups by conjugation. A Cayley diagram, subgroup lattice, and conjugacy classes are shown below.



(a) The right action of  $\text{Dic}_6$  on itself by conjugation is defined by the homomorphism

 $\phi \colon \operatorname{Dic}_6 \longrightarrow \operatorname{Perm}(S), \qquad \phi(g) = \text{the permutation that sends each } x \mapsto g^{-1}xg.$ 

Draw the action diagram and construct the fixed point table. Find stab(s) for each  $s \in S$ , fix(g) for each  $g \in G$ , as well as Ker( $\phi$ ) and Fix( $\phi$ ).

(b) The inner automorphism group

Inn(Dic<sub>6</sub>) 
$$\cong$$
 Dic<sub>6</sub> /Z(Dic<sub>6</sub>) = Dic<sub>6</sub> / $\langle r^3 \rangle \cong D_3$ 

acts on Dic<sub>6</sub>, and the action diagram is the same as the one in Part (a). Construct the fixed point table of this action and find  $\operatorname{stab}(s)$ ,  $\operatorname{fix}(g)$ ,  $\operatorname{Ker}(\phi)$  and  $\operatorname{Fix}(\phi)$ . Then draw the subgroup lattice of  $\operatorname{Inn}(\operatorname{Dic}_6) = \langle \varphi_r, \varphi_s \rangle$ , where  $\varphi_g \colon x \mapsto g^{-1}xg$ .

(c) The automorphism group of  $\text{Dic}_6$  is  $\text{Aut}(\text{Dic}_6) = \langle \varphi_r, \varphi_s, \alpha \rangle$ , where  $\alpha$  is the outer automorphism defined by

 $\alpha$ : Dic<sub>6</sub>  $\longrightarrow$  Dic<sub>6</sub>,  $\alpha(r) = r$ ,  $\alpha(s) = s^{-1} = r^3 s$ ,

that "reverses" the blue arrows. Construct the action diagram, fixed point table, and find  $\operatorname{stab}(s)$ ,  $\operatorname{fix}(g)$ ,  $\operatorname{Ker}(\phi)$  and  $\operatorname{Fix}(\phi)$ .

- (d) What familiar group is Aut(Dic<sub>6</sub>) =  $\langle \varphi_r, \varphi_s, \alpha \rangle$  isomorphic to? Construct a Cayley diagram and subgroup lattice.
- (e) The group Aut(Dic<sub>6</sub>) also acts on the conjugacy classes of Dic<sub>6</sub>. Construct the action diagram, fixed point table, and find stab(s), fix(g), Ker( $\phi$ ) and Fix( $\phi$ ).
- (f) The group  $Dic_6$  acts on its subgroups by conjugation, via the homomorphism

$$\phi: \operatorname{Dic}_6 \longrightarrow \operatorname{Perm}(S), \qquad \phi(g) = \text{the permutation that sends each } H \mapsto g^{-1} H g.$$

Construct the action diagram superimposed on the subgroup lattice. Then construct the fixed point table and find  $\operatorname{stab}(s)$ ,  $\operatorname{fix}(g)$ ,  $\operatorname{Ker}(\phi)$  and  $\operatorname{Fix}(\phi)$ .

2. Carry out the following steps for the groups  $C_7 \rtimes C_3$  and  $C_9 \rtimes C_3$ , whose Cayley diagrams are shown below.



- (a) Let G act on its subgroups by conjugation. Draw the action diagram superimposed on the subgroup lattice. Construct the fixed point table, and find  $\operatorname{stab}(H)$  for each  $H \leq G$ ,  $\operatorname{Ker}(\phi)$  and  $\operatorname{Fix}(\phi)$ . Which collections of subgroups arise as  $\operatorname{fix}(g)$  for some  $g \in G$ , and why?
- (b) Let G act on the right cosets of  $H = \langle s \rangle$ , via the homomorphism

$$\phi: G \longrightarrow \operatorname{Perm}(S), \qquad \phi(g) = \operatorname{the permutation that sends each } Hx \mapsto Hxg.$$

Construct the action diagram, fixed point table, and find  $\operatorname{stab}(Hx)$  for each right coset,  $\operatorname{Ker}(\phi)$  and  $\operatorname{Fix}(\phi)$ . Which subsets of S arise as  $\operatorname{fix}(g)$  for some  $g \in G$ , and why?

- 3. Let G be a group, not necessarily finite, and let A and B be subgroups of finite index, but not necessarily normal (in particular, we cannot assume that AB is a group).
  - (a) Show that even if AB is not a group, it is a disjoint union of cosets of A.
  - (b) Let B act on  $S = AB/A = \{Ax \mid x \in AB\}$  via the homomorphism

 $\phi \colon G \longrightarrow \operatorname{Perm}(S), \qquad \phi(g) = \operatorname{the permutation that sends each } Ax \mapsto Axg.$ 

Show that there is only one orbit.

- (c) Use the orbit-stabilizer theorem to show that  $[A : A \cap B] = [AB : B]$ .
- (d) Show that  $[G : A \cap B] \leq [G : A][G : B]$ . Give an explicit example of where the inequality is strict.
- (e) Show that there is some  $N \leq G$  contained in both A and B with  $[G:N] \leq \infty$ .