1. Let G be an unknown group of order 8. If it has no element of order 4, then $g^2 = e$ for all $g \in G$, and so G must be abelian. Otherwise, it has a "partial Cayley diagram" like one of the following:

Find all possibilities for finishing each diagram, and label by isomorphism type.

2. The subgroup lattice of the symmetric group S_4 is shown below.

- (a) Partition the subgroups into conjugacy classes. Carefully and completely justify your answers using the Sylow theorems, without making reference to cycle type.
- (b) For each conjugacy class $cl_G(H)$, find the isomorphism type of the normalizer $N_G(H)$.
- (c) Using the GroupNames website, make a table of all 15 groups of order 24, the number of subgroups, and basic information about their Sylow *p*-subgroups (number and isomorphism type). Write down at least one observation that you find interesting.
- (d) Which groups are *not* an internal direct or semidirect product of Sylow subgroups?
- (e) None of the following groups are among the 15 listed on GroupNames: D₆ × C₂, C₆ ⋊ C₄, C₆ ⋊ C₂², C₄ ⋊ C₆, C₃ ⋊ C₂³, C₂³ ⋊ C₃, C₂² ⋊ C₆, C₃ ⋊ Q₈, Q₈ ⋊ C₃, C₄ ⋊ S₃. Find which of the 15 each is isomorphic to, and add this this to your table under the "alias(es)" column.

- 3. Show that there are no simple groups of the following order.
 - (i) $45 = 3^2 \cdot 5$ (ii) $56 = 2^3 \cdot 7$ (iii) $108 = 2^2 \cdot 3^3$ (iv) p^n (n > 1).

[*Hint*: For Part (d), first use a suitable group action to show that |Z(G)| > 1.]

- 4. After A_5 , the next smallest nonabelian simple group is $G = GL_3(\mathbb{Z}_2)$, the invertible 3×3 binary matrices. It has order $168 = 2^3 \cdot 3 \cdot 7$.
 - (a) What do the Sylow theorems tell us about the possibilities for n_2 , n_3 , and n_7 ?
 - (b) Show that G is isomorphic to a subgroup of A_8 . [*Hint*: Let G act on its Sylow 7-subgroups by conjugation.]
- 5. Let G be an unknown group of order 90.
 - (a) Using the Sylow theorems, find all possibilities for n_2 , n_3 , and n_5 , where n_p is the number of Sylow *p*-subgroups of *G*.
 - (b) Suppose that G has a nonnormal Sylow 5-subgroup. Show that there is a non-trivial homomorphism $\phi: G \to S_6$.
 - (c) If $\phi: G \to A_6$, show that ϕ is not injective. You may assume that A_6 is simple.
 - (d) Show that G cannot be simple.
 - (e) Using the GroupNames website, make a list of all groups of order 90, and write down the actual vaules of n_2 , n_3 , and n_5 for each. Does anything surprise you about this?