1. Let G be an unknown group of order 8. If it has no element of order 4 , then $g^{2}=e$ for all $g \in G$, and so G must be abelian. Otherwise, it has a "partial Cayley diagram" like one of the following:

Find all possibilities for finishing each diagram, and label by isomorphism type.
2. The subgroup lattice of the symmetric group S_{4} is shown below.

(a) Partition the subgroups into conjugacy classes. Carefully and completely justify your answers using the Sylow theorems, without making reference to cycle type.
(b) For each conjugacy class $\mathrm{cl}_{G}(H)$, find the isomorphism type of the normalizer $N_{G}(H)$.
(c) Using the GroupNames website, make a table of all 15 groups of order 24, the number of subgroups, and basic information about their Sylow p-subgroups (number and isomorphism type). Write down at least one observation that you find interesting.
(d) Which groups are not an internal direct or semidirect product of Sylow subgroups?
(e) None of the following groups are among the 15 listed on GroupNames: $D_{6} \times C_{2}$, $C_{6} \rtimes C_{4}, C_{6} \rtimes C_{2}^{2}, C_{4} \rtimes C_{6}, C_{3} \rtimes C_{2}^{3}, C_{2}^{3} \rtimes C_{3}, C_{2}^{2} \rtimes C_{6}, C_{3} \rtimes Q_{8}, Q_{8} \rtimes C_{3}, C_{4} \rtimes S_{3}$. Find which of the 15 each is isomorphic to, and add this this to your table under the "alias(es)" column.
3. Show that there are no simple groups of the following order.
(i) $45=3^{2} \cdot 5$
(ii) $56=2^{3} \cdot 7$
(iii) $108=2^{2} \cdot 3^{3}$
(iv) $p^{n} \quad(n>1)$.
[Hint: For Part (d), first use a suitable group action to show that $|Z(G)|>1$.]
4. After A_{5}, the next smallest nonabelian simple group is $G=\mathrm{GL}_{3}\left(\mathbb{Z}_{2}\right)$, the invertible 3×3 binary matrices. It has order $168=2^{3} \cdot 3 \cdot 7$.
(a) What do the Sylow theorems tell us about the possibilities for n_{2}, n_{3}, and n_{7} ?
(b) Show that G is isomorphic to a subgroup of A_{8}. [Hint: Let G act on its Sylow 7-subgroups by conjugation.]
5. Let G be an unknown group of order 90 .
(a) Using the Sylow theorems, find all possibilities for n_{2}, n_{3}, and n_{5}, where n_{p} is the number of Sylow p-subgroups of G.
(b) Suppose that G has a nonnormal Sylow 5 -subgroup. Show that there is a non-trivial homomorphism $\phi: G \rightarrow S_{6}$.
(c) If $\phi: G \rightarrow A_{6}$, show that ϕ is not injective. You may assume that A_{6} is simple.
(d) Show that G cannot be simple.
(e) Using the GroupNames website, make a list of all groups of order 90, and write down the actual vaules of n_{2}, n_{3}, and n_{5} for each. Does anything surprise you about this?

