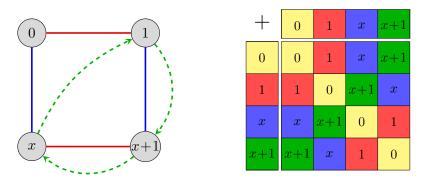
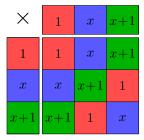
1. The finite field \mathbb{F}_4 on 4 elements can be constructed as the quotient of the polynomial $\mathbb{Z}_2[x]$ by the ideal $I = (x^2 + x + 1)$ generated by the irreducible polynomial $x^2 + x + 1$. The figure below shows a Cayley diagram, and multiplication and addition tables for the finite field $\mathbb{Z}_2[x]/(x^2 + x + 1) \cong \mathbb{F}_4$.





The polynomials $f(x) = x^3 + x + 1 \in \mathbb{Z}_2[x]$ and $g(x) = x^2 + x + 2 \in \mathbb{Z}_3[x]$ are irreducible. Construct the Cayley tables and Cayley diagram for the finite fields

$$\mathbb{F}_8 \cong \mathbb{Z}_2[x]/(f)$$
 and $\mathbb{F}_9 \cong \mathbb{Z}_3[x]/(g)$.

What familiar groups appear as the additive and multiplicative groups of these fields?

- 2. Let R be a commutative ring with 1.
 - (a) Show that R is an integral domain if and only if 0 is a prime ideal.
 - (b) Show that an ideal $P \subseteq R$ is prime if and only if R/P is an integral domain.
 - (c) Show that every maximal ideal is prime.
 - (d) Find the group of units U(R) and the maximal ideal(s) of the ring

$$R = \left\{ \frac{a}{b} : a, b \in \mathbb{Z}, \ \gcd(a, b) = 1, \ p \nmid b \right\},\$$

where p is a fixed prime number.

- 3. An ideal $I \subseteq R$ is radical if $x^n \in I$ implies that $x \in I$. It is primary if $ab \in I$ implies that either $a \in I$ or b^n for some $n \in \mathbb{N}$. An element $r \in R$ is nilpotent if r^n for some $n \in \mathbb{N}$.
 - (a) Show that $I \subsetneq R$ is radical if and only if R/I has no nonzero nilpotent elements.
 - (b) Show that the following are equivalent for $I \subsetneq R$:
 - (i) *I* is prime
 - (ii) I is radical and primary
 - (iii) The ideal

$$I[x] := \left\{ \sum_{k=0}^{n} a_k x^k \mid a_k \in I \right\}$$

is a prime ideal of R[x].

- (c) Let R be a principal ideal domain. Characterize all nonzero proper ideals that are radical, and all nonzero proper ideals that are primary.
- 4. Let R be a principal ideal domain. A common multiple of $a, b \in R^*$ is an element m such that $a \mid m$ and $b \mid m$. Moreover, m is a least common multiple (lcm) if $m \mid n$ for any other common multiple n of a and b.
 - (a) Show that any $a, b \in \mathbb{R}^*$ have an lcm.
 - (b) Show that an lcm of a and b is unique up to multiplication of associates, and can be characterized as a generator of the (principal) ideal $I := (a) \cap (b)$.
- 5. For any $x = r + s\sqrt{m} \in \mathbb{Q}(\sqrt{m})$, define the norm of x to be $N(x) = r^2 ms^2$.
 - (a) Show that N(xy) = N(x)N(y).
 - (b) Show that $N(x) \in \mathbb{Z}$ if $x \in R_m$.
 - (c) Show that $u \in U(R_m)$ if and only if |N(u)| = 1.
 - (d) Show that $U(R_{-1}) = \{\pm 1, \pm i\}, U(R_{-3}) = \{\pm 1, \pm (1 \pm \sqrt{3})/2\}, \text{ and } U(R_m) = \{\pm 1\}$ for all other negative square-free $m \in \mathbb{Z}$.