1. The finite field \mathbb{F}_{4} on 4 elements can be constructed as the quotient of the polynomial $\mathbb{Z}_{2}[x]$ by the ideal $I=\left(x^{2}+x+1\right)$ generated by the irreducible polynomial $x^{2}+x+1$. The figure below shows a Cayley diagram, and multiplication and addition tables for the finite field $\mathbb{Z}_{2}[x] /\left(x^{2}+x+1\right) \cong \mathbb{F}_{4}$.

The polynomials $f(x)=x^{3}+x+1 \in \mathbb{Z}_{2}[x]$ and $g(x)=x^{2}+x+2 \in \mathbb{Z}_{3}[x]$ are irreducible. Construct the Cayley tables and Cayley diagram for the finite fields

$$
\mathbb{F}_{8} \cong \mathbb{Z}_{2}[x] /(f) \quad \text { and } \quad \mathbb{F}_{9} \cong \mathbb{Z}_{3}[x] /(g)
$$

What familiar groups appear as the additive and multiplicative groups of these fields?
2. Let R be a commutative ring with 1 .
(a) Show that R is an integral domain if and only if 0 is a prime ideal.
(b) Show that an ideal $P \subseteq R$ is prime if and only if R / P is an integral domain.
(c) Show that every maximal ideal is prime.
(d) Find the group of units $U(R)$ and the maximal ideal(s) of the ring

$$
R=\left\{\frac{a}{b}: a, b \in \mathbb{Z}, \operatorname{gcd}(a, b)=1, p \nmid b\right\},
$$

where p is a fixed prime number.
3. An ideal $I \subseteq R$ is radical if $x^{n} \in I$ implies that $x \in I$. It is primary if $a b \in I$ implies that either $a \in I$ or b^{n} for some $n \in \mathbb{N}$. An element $r \in R$ is nilpotent if r^{n} for some $n \in \mathbb{N}$.
(a) Show that $I \subsetneq R$ is radical if and only if R / I has no nonzero nilpotent elements.
(b) Show that the following are equivalent for $I \subsetneq R$:
(i) I is prime
(ii) I is radical and primary
(iii) The ideal

$$
I[x]:=\left\{\sum_{k=0}^{n} a_{k} x^{k} \mid a_{k} \in I\right\}
$$

is a prime ideal of $R[x]$.
(c) Let R be a principal ideal domain. Characterize all nonzero proper ideals that are radical, and all nonzero proper ideals that are primary.
4. Let R be a principal ideal domain. A common multiple of $a, b \in R^{*}$ is an element m such that $a \mid m$ and $b \mid m$. Moreover, m is a least common multiple (lcm) if $m \mid n$ for any other common multiple n of a and b.
(a) Show that any $a, b \in R^{*}$ have an lcm.
(b) Show that an lcm of a and b is unique up to multiplication of associates, and can be characterized as a generator of the (principal) ideal $I:=(a) \cap(b)$.
5. For any $x=r+s \sqrt{m} \in \mathbb{Q}(\sqrt{m})$, define the norm of x to be $N(x)=r^{2}-m s^{2}$.
(a) Show that $N(x y)=N(x) N(y)$.
(b) Show that $N(x) \in \mathbb{Z}$ if $x \in R_{m}$.
(c) Show that $u \in U\left(R_{m}\right)$ if and only if $|N(u)|=1$.
(d) Show that $U\left(R_{-1}\right)=\{ \pm 1, \pm i\}, U\left(R_{-3}\right)=\{ \pm 1, \pm(1 \pm \sqrt{3}) / 2\}$, and $U\left(R_{m}\right)=\{ \pm 1\}$ for all other negative square-free $m \in \mathbb{Z}$.

