
Class schedule: Math 4120, Spring 2022

• Week 1: 1/12–1/14. Course overview Wednesday. One lecture Friday covering
the Chapter 1 slides (pp. 1–11). Approximate YouTube content: Lectures 1.1–1.2.
HW 1 due next Friday.

Summary & key ideas. We introduced Cayley diagrams, and saw several exam-
ples of groups: the symmetries of a rectangle, and of a triangle. We saw how these
defined algebraic relations.

To do: Read over the slides, formulate any questions you may have. Look at the
HW 1 problems, and attempt #1abc, #2abc, #3a.

• Week 2: 1/17–1/21. No class Monday (MLK Day). Two lectures covering the
Chapter 1 slides (pp. 12–39). Approximate YouTube content: Lectures 1.3–1.4.
HW 1 due next Monday.

Summary & key ideas. We saw how the same group can have very different
looking Cayley diagrams depending on generating sets. Thus far, we have seen 3
groups of size 8. We discussed the Rubik’s cube group, cyclic groups, and learned
how to label Cayley diagrams with actions. This motivated the idea of a group
presentation. Finally, we learned about (infinite) frieze groups and classified them.

To do: Read over the slides, formulate any questions you may have. Familiarize
yourself with the presentations of all of the groups we have seen. Finish HW 1.

• Week 3: 1/24–1/28. Three lectures covering the Chatper 1 slides (pp. 40–56),
and the Chapter 2 slides (pp. 1–26). Approximate YouTube content: Lectures 1.5,
1.6 2.1, 2.2, and supplemental material (roots of unity). HW 2 due next Monday.

Summary & key ideas. We saw that there were “17 different types of wallpaper”,
and “230 types of crystals.” The quaternion group Q8 was the first abstract group
we’ve seen that doesn’t the describe symmetries or actions. By constructing Cayley
tables, we were able to see the concept of a quotient. We finally gave the formal
definition of a group, and several examples of “things that look like groups but
aren’t”, illustrating why a formal definition is needed. Moving into Chapter 2, we
learned about roots of unity and how to factor xn−1 using cyclotomic polynomials.
Then, we saw defined cyclic groups, both additively as Zn = 〈1〉 and multipliative
as Cn = 〈r〉. Finally, we introduced the dihedral groups Dn, and the notion of a
cycle diagram. We saw how to represent the group Cn and Dn with 2× 2 matrices.
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To do: Read over the slides, formulate any questions you may have. Be able to
distinguish between a minimal and minimum generating set. Know how to gener-
ate Cn and Dn several different ways. Memorize how to represent the groups V4,
Cn, and Dn with 2×2 matrices. Be able to construct the cycle graph of an abstract
group using its Cayley diagram. Finish HW 2, #1–4.

Week 4: 1/31–2/4. Three lectures covering the Chapter 2 slides (pp. 27–60).
Approximate YouTube content: Lectures 2.3, 2.4. HW 2 due this Monday, HW 3
due next Monday.

Summary & key ideas. We saw how to construct the direct product of two
groups, and prove that Zn × Zm ∼= Znm iff gcd(n,m) = 1. We stated the big the-
orem that every finite (and finitely generated) abelian group is a direct product
of cyclic groups. We saw two ways to classify these: by “prime powers”, and “el-
ementary divisors.” We introducted permutations, and several ways of encoding
them, with cycle notation being our go-to method. We learned about even vs. odd
permutations. The symmetric group Sn consists of all n! permutations, and the
alternating group An consists of all n!/2 even permutations. We saw a number of
ways to arrange Cayley diagrams of S4 on various Archimedean solids, and explored
different ways to generated Sn. Finally, we stated Cayley’s theorem: every finite
group is isomorphic to a collection of permutations. We saw two algorithms for how
to construct such permutations: one from a Cayley diagram, and another from a
Cayley table.

To do: Read over the slides, formulate any questions you may have. Be able to
write down all abelian groups of order n for a fixed n. Get good at composing
permutations in cycle notations, and basic properties such as order, parity, etc.
Remember than the cycle (12 · · ·n) is an even permutation iff n is odd, and vice-
versa. Know how to generate the symmetric group as both Sn = 〈(12), . . . , (n n−1)〉
and Sn = 〈(12), (12 · · ·n)〉. Finish HW 3.

Week 5: 2/7–2/11. Three lectures covering the Chapter 2 slides (pp. 61–102).
Approximate YouTube content: Lecture 3.4 (0:00–17:02), and supplemental mate-
rial on permutation matrices, some “lesser known” groups (dicyclic, diquaternion,
semidihedral, and semiabelian), rewirings, and automorphisms of cyclic groups.
HW 3 due this Monday, HW 4 due next Monday.

Summary and big ideas: We learned about permutation matrices, and how our
previous observation of how there were two canonical ways to label a permutahedron
(Cayley diagram for Sn) with permutations (swap coordinates, vs. swap numbers)
can be realized by right-multiplying row vectors vs. left-multiplying column vectors.
Next, we generalized the quaternion groups by replacing i =

√
−1 = ζ4 = e2πi/4

with a larger (even) root of unity ζn, to define the dicyclic group Dicn = 〈ζn, j〉.
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Then we explored how to “rewire” the inner cycle of the Cayley diagram for Dn to
define new groups. If n is a power of 2, then there are two new ways to do this,
leading to the semidihedral and semiabelian groups, respectively. We saw how to
represent all of these groups with 2× 2 matrices involving roots of unity. Next, we
reviewed direct products, and explored a visual “inflation method” to construct a
Cayley diagram of A×B from diagrams of A and B, respectively: inflate B-nodes
like “balloons” and stick in A-Cayley diagrams, and re-connect nodes across bal-
loons. A semidirect product results if we “rewire” A-diagrams (an automorphism)
before inserting them. We explored this for cyclic groups.

To do: Read over the slides, formulate any questions you may have. Famil-
iarize yourself with the Cayley diagrams of Dicn, DQ8, SD8, and SA8, and the
standard matrix representations of Dn, Dicn, DQn, SDn, and SAn. Understand
how to “rewire” a Cayley diagram of Cn, how to iterate this process, and why
Aut(Cn) ∼= Un. Be able to construct a semidirect product Cn o Cm, for certain n
and m that you are given (not all will work).

Week 6: 2/14–2/18. Three lectures covering the Chapter 2 slides (pp. 103–115)
and Chapter 3 slides (pp. 1–24). Approximate YouTube content: Lectures 3,1, 3.2,
and supplemental material on finite groups. HW 4 due this Monday, HW 5 due
next Monday.

Summary and big ideas: If n = 2m, then there are four semidirect products of
Cn with C2: the abelian group Cn o C2, dihedral group Dn, semidihedral group
SDn, and semiabelian group SAn. We saw how if n = 2m is even, then Dn is
isomomorphic to a direct product of two proper subgroups. We discussed groups
of matrices, where the coefficients come from a field – a set of numbers where we
can add, subtract, multiply and divide. Examples of groups of matrices include the
general linear (det 6= 0) and special linear (det = 1) groups, and affine groups. An
example that will reappear is SL2(Z3), a group of order 24, that is also isomorphic
to the binary tetrahedral group, 2T, an order-24 subgroup of the Hamiltonians (like
the quaternions but with coefficients from R). We briefly discussed the goals of
breaking up groups into “building block groups”, and the surprising fact that there
are so many p-groups.

Moving onto Chapter 3, we looked at the subgroups of both groups of order 4,
both groups of order 6, and all 5 groups of order 8. These can be visualized in a
subgroup lattice. To show that a subset H ⊆ G is a subgroup, we learned about
the short “one-step subgroup test.” We proved that subgroups of cyclic groups are
cyclic. Next, we introduced the notion of a coset, both visually and algebraically.
We saw that left and right cosets are generally different, and proved some basic
properties, like the xH = H iff x ∈ H, and how the cosets partition the group.
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To do: Read over the slides, formulate any questions you may have. Memorize the
subgroup lattices of all groups of order 4, 6, and 8, i.e., be able to construct them
without notes. Be able to write down all subgroup of the cyclic group Zn, and find
their orders. Know how to verify that a subset H ⊆ G is a subgroup. Given a
subgroup H ≤ G, be able to find its left and right cosets, both using the Cayley
diagram, and algebraically.

Week 7: 2/21–2/25. Three lectures covering the Chapter 3 slides (pp. 25–68).
Approximate YouTube content: Lectures 3.3, 3.4 (17:03–23:16) 3.5, 3.6. HW 5 due
this Monday, HW 6 due next Monday.

Summary and big ideas: We learned about the tower law (“subgroup index
is multipliative”), the center of a group (the elements that commute with every-
thing), and the normalizer of a subgroup (union of left cosets that are also right
cosets). The proportion of such cosets is the (reciprocal of the) degree of normal-
ity of H, and this meausure how close/far a subgroup is to being normal. We
also studied conjugate subgroups, and learned the very important tidbit: the num-
ber of conjugate subgroups is the index of the normalizer. In many cases, we can
identify the conjugacy classes and normalizers simply by inspecting the subgroup
lattice. Certain subgroups are always normal, such as unicorns, those contained in
the center, and those of index 2. We saw two subgroups of order 16 that had the
same subgroup lattice. Conjugacy classes of subgroups look like “fans”, and their
“bases” are always normal. This means that simply group have a very restrictive
structure, and we saw the lattice of A5 as an example. We also looked at conju-
gate subgroups algebraically, starting with the important fact that aH = bH need
not imply Ha = Ha, but it does imply that Ha−1 = Hb−1. This gave us a nice
way to find conjugate subgroups on a Cayley diagram. Next, we learned that if
A normalizes B (i.e., aB = Ba for all a ∈ A), then AB is a subgroup of G. A
weaker but more common condition is: if at least one of A or B is normal, then
AB ≤ G. Finally, we formalized the notion of a quotient: G/N is a group iff NEG.
Specifically, G/N is the set of left (or right) cosets, and we define aN · bN := abN .
This works iff N is normal, and is the very important concept of the operation
being well-defined.

To do: Read over the slides, formulate any questions you may have. Be able to
label edges of a subgroup lattice with the index, [H : K]. Know examples of where
xH = Hx even though xh 6= hx, elementwise. Learn the center Z(G) of some of
our favorite groups (e.g., Dn, Sn, An, Q8, Dicn). Be able to find the normalizer
of a subgroup H, and know that it is at least H itself (worse case; fully unnor-
mal) and at most G (best case; normal). Be able to find all conjugate subgroups
of H from the Cayley diagram. Know all three ways to check that a subgroup is
normal, and be aware that sometimes, one of them is much easier than the rest.
Get good at being able to determine the conjugacy classes and normalizers of a
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subgroup lattice just by inspection, though this is not always possible. Be able
to recognize unicorn subgroups. However, given a conjugacy class, you should be
able to find the normalizer of one of its subgroups. Given two subgroups A and
B in a lattice, determine if AB is a subgroup, and if so, which one it is. Given
a normal subgroup NEG, be able to construct a Cayley table of the quotient G/N .

Week 8: 2/28–3/4. One-and-a-half lectures covering the Chapter 3 slides (pp.
73–82). Approximate YouTube content: Lecture 3.7. Midterm 1 Wednesday. HW
6 due this Monday, HW 7 due next Monday.

Summary and big ideas: We proved that G/N is a group if and only if N is nor-
mal. Then, we moved onto the idea of conjugating elements: x and y are conjugate
if x = gyg−1 for some g ∈ G. A theme in mathematics is conjugate elements have
the same structure. We showed the conjugate elements have the same order, and
saw visual interpretations in frieze and dihedral groups. This allowed us to classify
conjugate classes of elements in D5 and D6.

To do: Read over the slides, formulate any questions you may have. Memorize
the definition aN · bN = abN , and be able to state and prove what it means for
that binary operation on G/N to be well-defined. Know that z ∈ G is central iff its
conjugacy class has size 1, and be able to prove this. Be able to partition a group
by the conjugacy classes of the elements.

Week 9: 3/7–3/11. Three lectures covering the Chapter 3 slides (pp. 83–90) and
the Chpater 4 slides (pp. 1–24). Approximate YouTube content: 4.3 (7:01–13:27).
HW 7 due this Monday, HW 8 due next Monday.

Summary and big ideas: Two permutations are conjugate in Sn if and only if
they have the same cycle type. The centralizer of an element h ∈ G is the subset
CG(h) that commutes with h. We saw that | clG(h)| = [G : CG(h)], i.e., the more
things that commute with h, the fewer conjuates it has. This is analogous to nor-
malizers and conjugacy classes of subgroups; recall that | clG(H)| = [G : NG(H)],
i.e., the more things that commute with H (set-wise), the fewer conjugates it has.

Moving onto Chapter 4, we defined the notion of a homomorphism, which is a
structure-preserving map between groups. There are two types of homomorphisms:
embeddings (occurs when one group is a subgroup of another), and quotient maps,
when one group is a quotient of another. The kernel of a homomorphism is the set
of elements that get mapped to the identity, and this is a normal subgroup. We
stated and proved the fundamental homomorphism theorem: G/Ker(φ) ∼= Im(φ),
which says that “every homomorphism image is a quotient.
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To do: Read over the slides, formulate any questions you may have. Know how to
identify the conjugacy classes of permutations in Sn. Be able to find the central-
izers of group elements from knowing the conjugacy classes, and vice-versa. Learn
the definition of a homomorphism φ : G → H, its kernel, and the preimage of an
element h ∈ H. Get used to working with the property φ(ab) = φ(a)φ(b), and the
facts that φ(1) = 1 and φ(gk) = φ(g)k, even if k is negative (be able to prove these
facts). Be able to prove that the kernel is a subgroup and that it is normal. Be
able to formally state what it means for a map φ : G/N → H to be well-defined.
Learn the proof of the fundamental homomorphism theorem.

Week 10: 3/14–3/18. Three lectures covering the Chapter 4 slides (pp. 25-70).
Approximate YouTube content: Lecture 4.3 (13:28–32:52), 4.5, 4.6, and supplemen-
tal material on automorphisms and semidirect products. HW 8 due this Monday,
HW 9 due the Monday after spring break.

Summary and big ideas: We saw how to apply the FHT for showing that
G/N ∼= H. Then we saw the last three isomorphism theorems. The FHT theorem
says that “every homomorphic image is a quotient.” The correspondence theorem
characterizes subgroups of quotients of N (they are just quotients of subgroup that
contain N), and the freshman theorem characterizes quotients of quotients. Both
of these were difficult algebraically, but had very intuitive interpretations in terms
of subgroup lattices, and “shoeboxes” (cosets). Finally, the diamond theorem chac-
terizes quotients of the form AB/B.

Next, we moved onto commutators, which can be thought of as the “nonabelian
parts” of a group. These generate the commutator subgroup G′, and the quotient
G/G′ is the largest abelian quotient of G. This also has a nice subgroup lattice
interpretation.

Finally, we moved onto automorphisms, which are isomorphisms from a group
to itself. This allowed us to extend the Chapter 2 concept of “structure-preserving
rewiring” from cyclic groups to all groups, and we saw several examples: V4 and D3.
This allowed us to construct semidirect products like V4 oB. The set of automor-
phisms forms a group Aut(G). The inner automorphisms are those that are con-
jugations, e.g., g 7→ x−1gx, and these form a normal subgroup Inn(G) ∼= G/Z(G).
Automorphisms that are not inner are called outer and the outer automorphism
group is the quotient Out(G) := Aut(G)/ Inn(G).

To do: Read over the slides, formulate any questions you may have. Be able to
apply the FHT to establish G/N ∼= H; we’ve seen a number of examples like this.
Learn the proofs all of the isomorphism theorems on your own (one of these will
be on the midterm and final exam). Be able to construct the subgroup lattice of a
quotient, by “chopping” the lattice at that subgroup. Be able to determine what
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G/N is isomorphic to, just by inspection of the subgroup lattice of G. Be able to
interpret all of the isomorphism theorems in terms of subgroup lattices. Given a
subgroup lattice, be able to find the commutator subgroup by inspection. Given a
group G, be able to construct the inner automorphism group, Inn(G) ∼= G/Z(G)
and outer automorphism group Out(G) = Aut(G)/ Inn(G).

Week 11: 3/28–4/1. Three lectures covering the Chapter 4 slides (pp. 70-81),
and the Chapter 5 slides (pp. 1–30). HW 9 due this Monday, HW 10 due next
Monday.

Summary and big ideas: We saw how to define a semidirect product A oθ B
algebraically, where θ : B → Aut(A). We also learned that G = NK is (i) isomor-
phic to N ×K iff both N and K are normal, and N ∩K = 〈e〉, and (ii) isomorphic
to N oK iff N is normal and N ∩K = 〈e〉, and in this case, θ is an inner auto-
morphism. This gave us a way to identify direct and semidirect products from the
subgroup lattice by inspection alone: find two subgroups, N and H, that generate
G, intersection trivially, and at least one is normal.

We introduced the concept of a group action: a homomorphism φ : G→ Perm(S).
This should be thought of as a “group switchboard”: every element g ∈ G has a
“button”, and pressing the g-button rearranges the set S. The only rule is that
“pressing the a-button and then the b-button has the same effect as pressing the
ab-button.” We saw several examples of this with D4, like how it acts on a set of
“binary squares”, how it acts on itself by multiplication, or by conjugation, and
how it acts on its subgroups by conjugation. These all result in action diagrams,
which can be thought of as generalization of a Cayley diagram.

Every action has five fundamental features. Three are “local”: given s ∈ S, its
orbit orb(s) is the connected component in the action diagram, and its stabilizer
stab(s) are the elements of G that fixes it. We can also take a group element g ∈ G,
and define its fixed point set fix(g) to be the set of s ∈ S that it fixes. The best
way to visualize these is to construct a “fixed point table”, and look at the rows and
columns. There are two “global features”: the kernel Ker(φ) is the set of “broken
buttons”, also just the intersection of the stablizers. The set of fixed points, Fix(φ),
are the elements in S that don’t get moved by anything; this is also the intersection
of all fix(g).

We stated and proved two fundamental theorems about orbits: (i) the orbit-
stabilizer theorem: that |G| = | orb(s)| · | stab(s)|, for any s ∈ S, and (ii) the orbit
counting theorem: that the number of orbits is the average size of fix(g), i.e., the
“average number of checkmarks per row in the orbit table”.
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To do: Given a subgroup lattice, be able to identify all pairs N and H for which
G ∼= N ×H, or G ∼= N oH, just by inspection. Given a group action, be able to
determine the orbits, stabilizers, fixed point sets, as well as the kernel and set of
fixed points. Get good at the “group switchboard analogy”, and be able to write
down formal definitions of the aforementioned terms (from the concept, not from
memory). Learn the statements of the orbit-stabilizer and orbit-counting theorem,
and be able to apply them to specific actions.

Week 12: 4/4–4/8. Three lectures covering the Chapter 5 slides (pp. 31–44,
53–70). HW 10 due this Monday, HW 11 due next Monday.

Summary and big ideas: We considered the action of a group G acting on its
subgroups by conjugation. In this setting, the orbits are conjugacy classes, the
stablizers are normalizers, and the kernel and set of fixed points are the normal
subgroups. We got an an immediately corollary of the orbit-stabilizer theorem that
clG(H) = [G : NG(H)]. We also saw the action of G on the cosets of some H ≤ G.
The action diagram can be constructed from collapasing the Cayley diagram of G
by the right (not left!) cosets of H. This was useful for proving a few results about
subgroups of small index: (i) if G has no subgroup of index 2, then any subgroup
of index 3 is normal, and (ii) if [G : H] = p for the smallest prime dividing |G|,
then H is normal.

We also observed that the automorphism groups Aut(G), and its normal sub-
group Inn(G), naturally act on G. We skipped over the section on “action equiva-
lent”, though briefly summarized the main ideas. Next up were the Sylow theorems,
which tell us a lot about a group G of order |G| = pnm, where p - m is prime. Before
we stated these, we proved a few basic results about p-groups, which are subgroups
of order pn. If a p-group G acts on a set S, then |Fix(φ)| ≡ |S| modulo p. The
main utility of this lemma is that by setting up a particular group action, we get
that in any group G, a (non-maximal) p-subgroup H must have a normalizer that
is strictly bigger than H. That is, H cannot be fully unnormal, unless |H| = pn.

A “maximal” p-subgroup (i.e., one of order pn) is called a Sylow p-subgroup. The
first Sylow theorem tells us that p-groups of all possible sizes exist, and they’re
nested into “towers” in the subgroup lattice. The second Sylow theorem says that
the top of these towers (the Sylow p-subgroups) form a single conjugacy class. We
proved both of these. Along the way, we took a “mystery group” of order 12, and
deduced as much as we could about its structure just from its size, and the Sylow
theorems.

To do: Given a group G action on itself, its subgroups, or cosets, be able to deter-
mine the orbits, stabilizers, fixed point sets, as well as the kernel and set of fixed
points. Usually these will be familiar algebraic objects. Be able to interpret these
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in a “fixed point table.” Learn the definitions of p-subgroup and Sylow p-subgroup.
Given a group of order |G| = pnm, know how big its Sylow p-subgroups are. Learn
the statements of the first two Sylow theorems and be able to interpret them in a
subgroup lattice.

Week 13: 4/14–4/18. Three lectures covering the Chapter 5 slides (pp. 71–80,
87–89), and the Chapter 7 slides (pp. 1–19). HW 11 due this Monday, HW 12 due
next Monday.

Summary and big ideas: We stated and proved the 3rd Sylow theorem, that the
number np of Sylow p-subgroups divides m (where |G| = pn ·m) and is equivalent
to 1 modulo p. Then, we saw how to use this to establish that groups of particular
orders are not simple – all that is needed is to show that np = 1 for some prime
p. We finished Chapter 5 with the classification of finite simple groups, which was
finally completed in 2004 after 50 years and over 10000 pages.

We then moved onto ring theory. A ring is an additive abelian group R with
an additional binary operation that satisfies the distributive law. Basically, a set
in which we can add, subtract, multiply, but not necessarily divide. Rings can be
commutative (rs = sr for all r, s ∈ R) or noncommutaitve, and they may or may
not have a multiplicative identity element 1. Most finite rings are not all that in-
teresting, and very few are noncommutative with 1. Thus, most of our examples
from from familiar algebraic objects like sets of numbers (Z, Q, R, C), polynomials
R[x], functions, and n×n matrices. We also saw how to define a group ring for any
group G. The Hamiltonians are defined as “quaternions but with real coefficients.”
Elements in a ring that have multiplicative inverses are called units. If the product
of two nonzero elements is zero, then those are called zero divisors.

We saw example of various kinds of rings: fields, division rings, and integral
domains. We showed that finite integral domains are fields, and that in integral
domains enjoy the cancelation property: if ax = ay, then x = y. A subgroup I ⊆ R
is an ideal if it is invariant under multiplication. There are left, right, and two-sided
ideals. These are to rings what normal subgroups are to groups. We saw several
examples of ideals in polynomial rings, such as (x), (2), and (x, 2) in both Z[x] and
Q[x].

To do: There were a lot of new definitions and examples introduced, and these
need to be learned. Make sure you know the definition of ring, unit, zero divisor,
subring, ideal, integral domain, division ring, and field. Familiarize yourself with
the examples that we saw in class.



10

Week 14: 4/18–4/22. Two lectures covering Chapter 7 slides (pp. 19–39).
Midterm 2 Wednesday. HW 12 due this Monday, HW 13 due next Monday.

Summary and big ideas: Two-sided ideals are to rings what normal subgroups
are to groups. We define the quotient ring R/I as the set of cosets, and defined
how to multiply cosets: (x+ I)(y + I) := xy + I. We define ring homomorphisms,
and showed that the kernel is a two-sided ideal. This lead to the ring isomorphism
theorems, which were analogous to the ones for groups.

A maximal ideal M of R is a proper ideal that is contained in no strictly larger
proper ideals. If R is commutative, then by the correspondence theorem, R/M is
simple iff M is maximal, and this is also equivalent to R/M being a field (because
fields have no non-trivial proper ideals). We saw examples of maximal ideals in
common rings like Z, R[x], and F [x, y], and then saw how to construct finite fields.
The quotient Zp[x]/(f), for a degree-n polynomial is a finite field of order pn. It is
unique up to isomorphism, and all finite fields of order pn for some n ≥ 0.

An ideal P of R is prime if ab ∈ P implies either a ∈ P or b ∈ P . Prime ideals
in Z are just (p) for some prime p. A fundamental result (HW) is that P is prime
iff R/P is an integral domain, and it follows that every maximal ideal is prime.

To do: Be able to prove the basic results on ring theory that we learned: kernels
are ideals, the FHT for rings, that M is maximal iff R/M is a field, that P is prime
iff R/P is an integral domain.

Week 15: 4/25–4/29. Two lectures covering Chapter 7 slides (pp. 40–61). HW
13 (originally due Monday) merged with a shorted version of HW 14, due this Fri-
day.

Summary and big ideas: The (nonzero) integers have some basic properties that
we usually take for granted: numbers can be factored uniquely into primes, every
pair has a unique GCD and LCM, and there is a Euclidean algorithm that can find
the GCD. Perhaps surprisingly, these need not always hold in integral domains.
This motivates us to formalize “irreducible” and “prime”. Though prime ⇒ irre-
ducible, the converse fails. For example, in Z[

√
−5) the number 3 is irreduible but

not prime because 3 | (2 +
√
−5)(2−

√
−5) = 9, but 3 - (2±

√
−5).

Fortunately, there is a type of ring where such “bad things” don’t happen: a
principle ideal domain (PID), which means that every ideal I is generated by a
single element, I = (a). Examples include Z, Z[i], any field F , and F [x]. We
formalized the defnition of a GCD and LCM, and showed that they exist and are
unique in an aribitrary PID. We also showed that in a PID, every irreducible is
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prime. Alternatively, we can define a unique factorization domain (UFD) to be
any ring where every irredicble is prime , and every nonzero number is a product
of irreducibles. We showed that every PID is a UFD.

In the integers, the Euclidean algorithm is used to compute the GCD of two
numbers. Though GCDs exist in PIDs, there does not necessarily always exist a
Euclidean algorithm to compute them. However, we can define the class of rings
for which there is such an algorithm, and we call these Euclidean domains. For-
mally, this involves a degree function d : R∗ → Z satisfying some basic properties
(non-negativity, monotonicity, and division-with-remainder). In Z, this “degree” is
just |n|, and in F [x], it is deg(f(x)). We proved some basic properties about PIDs,
like how the elements with minimal degree are precisely the units, and how every
Euclidean domain is a PID.

Finally, we learned about the ring algebraic integers, which are roots of monic
polynomials in Z[x]. For each square-free m, the ring Rm is the intersection of
algebraic integers that lie in Q(

√
m). We saw that some of these are Euclidean

domains, some are “norm-Euclidean”, and others are just PIDs. It is still an open
problem to determine this for all m. Curiously, there are exactly four rings Rm, for
m < 0, that are PIDs but not Euclidean: m = −19,−43,−67,−163. We finished
the class with some pretty pictures of the algebraic integers in the complex plane.

To do: Study the types of rings that we’ve seen (commutative, integral domains,
UFDs, PIDs, Euclidean domains, and fields), know examples of each, which classes
are contained in other classes, etc.

Finals week: 5/2–5/6. Final exam Friday 8–10:30am.

To do: Study! The exam will be cumulative. You will have to do the following:
prove an isomorphism theorem, classify all abelian groups of a certain order, use the
Sylow theorems to show that there are no simple groups of a certain order, prove
a few basic results about groups and rings (e.g., prove something is a subgroup,
normal, or an ideal), apply the isomorphism theorems, analyze a group action, and
answer questions about a group from its subgroup lattice. This is not a comprehen-
sive list – there will be other things not explicitly mentioned here, but everything
listed above will be on the final.


