Lecture 1.5: Multiplication tables

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4120, Modern Algebra

Overview

We are almost ready to introduce the formal definition of a group.

In this lecture, we will introduce one more useful algebraic tool for better understanding groups: multiplication tables.

We will also look more closely at inverses of the actions in a group.

Finally, we will introduce a new group of size 8 called the quaternions which frequently arise in theoretical physics.

Inverses

If g is a generator in a group G, then following the " g-arrow" backwards is an action that we call its inverse, and denoted by g^{-1}.

More generally, if g is represented by a path in a Cayley diagram, then g^{-1} is the action achieved by tracing out this path in reverse.

Note that by construction,

$$
g g^{-1}=g^{-1} g=e
$$

where e is the identity (or "do nothing") action. Sometimes this is denoted by $e, 1$, or 0 .

For example, let's use the following Cayley diagram to compute the inverses of a few actions:

$r^{-1}=$
because r
$=e=$
$f^{-1}=$
because f
$=e=$
f
$(r f)^{-1}=$
because $(r f)$
$\left(r^{2} f\right)^{-1}=$
because $\left(r^{2} f\right)$
$=e=$

Multiplication tables

Since we can use a Cayley diagram with nodes labeled by actions as a "group calculator," we can create a (group) multiplication table, that shows how every pair of group actions combine.

This is best illustrated by diving in and doing an example. Let's fill out a multiplication table for V_{4}.

Since order of multiplication can matter, let's stick with the convention that the entry in row g and column h is the element $g h$ (rather than $h g$).

	e	v	h	r
e	e	v	h	r
v	v	e	r	h
h	h	r	e	v
r	r	h	v	e

Some remarks on the structure of multiplication tables

Comments

- The 1st column and 1st row repeat themselves. (Why?) Sometimes these will be omitted (Group Explorer does this).
- Multiplication tables can visually reveal patterns that may be difficult to see otherwise. To help make these patterns more obvious, we can color the cells of the multiplication table, assigning a unique color to each action of the group. Figure 4.7 (page 47) has examples of a few more tables.
- A group is abelian iff its multiplication table is symmetric about the "main diagonal."
- In each row and each column, each group action occurs exactly once. (This will always happen. . . Why?)

Let's state and prove that last comment as as theorem.

A theorem and proof

Theorem

An element cannot appear twice in the same row or column of a multiplictaion table.

Proof

Suppose that in row a, the element g appears in columns b and c. Algebraically, this means

$$
a b=g=a c
$$

Multiplying everything on the left by a^{-1} yields

$$
a^{-1} a b=a^{-1} g=a^{-1} a c \quad \Longrightarrow \quad b=c
$$

Thus, g (or any element) element cannot appear twice in the same row.

The proof that two elements cannot appear twice in the same column is similar, and will be left as a homework exercise.

Another example: D_{3}

Let's fill out a multiplication table for the group D_{3}; here are several different presentations:

$$
\begin{aligned}
D_{3} & =\left\langle r, f \mid r^{3}=e, f^{2}=e, r f=f r^{2}\right\rangle \\
& =\left\langle r, f \mid r^{3}=e, f^{2}=e, r f r=f\right\rangle
\end{aligned}
$$

	e	r	r^{2}	f	$r f$	$r^{2} f$
e	e	r	r^{2}	f	$r f$	$r^{2} f$
r	r	r^{2}	e	$r f$	$r^{2} f$	f
r^{2}	r^{2}	e	r	$r^{2} f$	f	$r f$
f	f	$r^{2} f$	$r f$	e	r^{2}	r
$r f$	$r f$	f	$r^{2} f$	r	e	r^{2}
$r^{2} f$	$r^{2} f$	$r f$	f	r^{2}	r	e

Observations? What patterns do you see?
Just for fun, what group do you get if you remove the " r 3 $=e$ " relation from the presentations above? (Hint: We've seen it recently!)

Another example: the quaternion group

The following Cayley diagram, laid out two different ways, describes a group of size 8 called the Quaternion group, often denoted $Q_{4}=\{ \pm 1, \pm i, \pm j, \pm k\}$.

The "numbers" j and k individually act like $i=\sqrt{-1}$, because $i^{2}=j^{2}=k^{2}=-1$.
Multiplication of $\{ \pm i, \pm j, \pm k\}$ works like the cross product of unit vectors in \mathbb{R}^{3} :

$$
i j=k, \quad j k=i, \quad k i=j, \quad j i=-k, \quad k j=-i, \quad i k=-j
$$

Here are two possible presentations for this group:

$$
\begin{aligned}
Q_{4} & =\left\langle i, j, k \mid i^{2}=j^{2}=k^{2}=i j k=-1\right\rangle \\
& =\left\langle i, j \mid i^{4}=j^{4}=1, i j i=j\right\rangle .
\end{aligned}
$$

