Lecture 1.5: Multiplication tables

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 4120, Modern Algebra

Overview

We are almost ready to introduce the formal definition of a group.

In this lecture, we will introduce one more useful algebraic tool for better understanding groups: multiplication tables.

We will also look more closely at inverses of the actions in a group.

Finally, we will introduce a new group of size 8 called the quaternions which frequently arise in theoretical physics.

Inverses

If g is a generator in a group G, then following the "g-arrow" backwards is an action that we call its inverse, and denoted by g^{-1} .

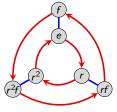
More generally, if g is represented by a path in a Cayley diagram, then g^{-1} is the action achieved by tracing out this path in reverse.

Note that by construction,

$$gg^{-1}=g^{-1}g=e\,,$$

where e is the identity (or "do nothing") action. Sometimes this is denoted by e, 1, or 0.

For example, let's use the following Cayley diagram to compute the inverses of a few actions:



$$r^{-1} = \underline{\qquad} \text{ because } r \underline{\qquad} = e = \underline{\qquad} r$$

$$f^{-1} = \underline{\qquad} \text{ because } f \underline{\qquad} = e = \underline{\qquad} f$$

$$(rf)^{-1} = \underline{\qquad} \text{ because } (rf) \underline{\qquad} = e = \underline{\qquad} (rf)$$

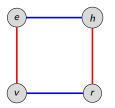
$$(r^2f)^{-1} = \underline{\qquad} \text{ because } (r^2f) \underline{\qquad} = e = \underline{\qquad} (r^2f).$$

Multiplication tables

Since we can use a Cayley diagram with nodes labeled by actions as a "group calculator," we can create a (group) multiplication table, that shows how every pair of group actions combine.

This is best illustrated by diving in and doing an example. Let's fill out a multiplication table for V_4 .

Since order of multiplication can matter, let's stick with the convention that the entry in row g and column h is the element gh (rather than hg).



	е	v	h	r
е	е	v	h	r
v	v	е	r	h
h	h	r	е	v
r	r	h	v	е

Some remarks on the structure of multiplication tables

Comments

- The 1st column and 1st row repeat themselves. (Why?) Sometimes these will be omitted (*Group Explorer* does this).
- Multiplication tables can visually reveal patterns that may be difficult to see otherwise. To help make these patterns more obvious, we can color the cells of the multiplication table, assigning a unique color to each action of the group. Figure 4.7 (page 47) has examples of a few more tables.
- A group is abelian iff its multiplication table is symmetric about the "main diagonal."
- In each row and each column, each group action occurs exactly once. (This will always happen... Why?)

Let's state and prove that last comment as as theorem.

Theorem

An element cannot appear twice in the same row or column of a multiplictaion table.

Proof

Suppose that in row a, the element g appears in columns b and c. Algebraically, this means

$$ab = g = ac$$

Multiplying everything on the left by a^{-1} yields

$$a^{-1}ab = a^{-1}g = a^{-1}ac \implies b = c.$$

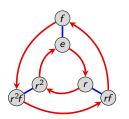
Thus, g (or any element) element cannot appear twice in the same row.

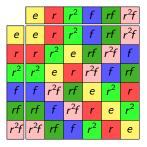
The proof that two elements cannot appear twice in the same column is similar, and will be left as a homework exercise. $\hfill \square$

Another example: D_3

Let's fill out a multiplication table for the group D_3 ; here are several different presentations:

$$D_3 = \langle r, f \mid r^3 = e, \ f^2 = e, \ rf = fr^2 \rangle$$
$$= \langle r, f \mid r^3 = e, \ f^2 = e, \ rfr = f \rangle.$$



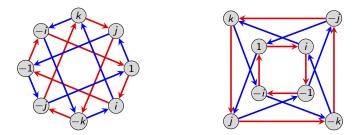


Observations? What patterns do you see?

Just for fun, what group do you get if you remove the " $r^3 = e$ " relation from the presentations above? (*Hint*: We've seen it recently!)

Another example: the quaternion group

The following Cayley diagram, laid out two different ways, describes a group of size 8 called the Quaternion group, often denoted $Q_4 = \{\pm 1, \pm i, \pm j, \pm k\}$.



The "numbers" j and k individually act like $i = \sqrt{-1}$, because $i^2 = j^2 = k^2 = -1$. Multiplication of $\{\pm i, \pm j, \pm k\}$ works like the cross product of unit vectors in \mathbb{R}^3 :

$$ij = k$$
, $jk = i$, $ki = j$, $ji = -k$, $kj = -i$, $ik = -j$.

Here are two possible presentations for this group:

$$\begin{split} Q_4 &= \langle i, j, k \mid i^2 = j^2 = k^2 = ijk = -1 \rangle \\ &= \langle i, j \mid i^4 = j^4 = 1, \ iji = j \rangle \,. \end{split}$$