Lecture 2.2: Dihedral groups

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4120, Modern Algebra

Overview

In this series of lectures, we are introducing 5 families of groups:

1. cyclic groups
2. abelian groups
3. dihedral groups
4. symmetric groups
5. alternating groups

This lecture is focused on the third family: dihedral groups.
These are the groups that describe the symmetry of regular n-gons.

Dihedral groups

While cyclic groups describe 2D objects that only have rotational symmetry, dihedral groups describe 2D objects that have rotational and reflective symmetry.

Regular polygons have rotational and reflective symmetry. The dihedral group that describes the symmetries of a regular n-gon is written D_{n}.

All actions in C_{n} are also actions of D_{n}, but there are more than that. The group D_{n} contains $2 n$ actions:

- n rotations
- n reflections.

However, we only need two generators. Here is one possible choice:

1. $r=$ counterclockwise rotation by $2 \pi / n$ radians. (A single "click.")
2. $f=\mathrm{flip}$ (fix an axis of symmetry).

Here is one of (of many) ways to write the $2 n$ actions of D_{n} :

$$
D_{n}=\{\underbrace{e, r, r^{2}, \ldots, r^{n-1}}_{\text {rotations }}, \underbrace{f, r f, r^{2} f, \ldots, r^{n-1} f}_{\text {reflections }}\}
$$

Cayley diagrams of dihedral groups

Here is one possible presentation of D_{n} :

$$
D_{n}=\left\langle r, f \mid r^{n}=e, f^{2}=e, r f r=f\right\rangle .
$$

Using this generating set, the Cayley diagrams for the dihedral groups all look similar. Here they are for D_{3} and D_{4}, respectively.

There is a related infinite dihedral group D_{∞}, with presentation

$$
D_{\infty}=\left\langle r, f \mid f^{2}=e, r f r=f\right\rangle .
$$

We have already seen its Cayley diagram:

Cayley diagrams of dihedral groups

If s and t are two reflections of an n-gon across adjacent axes of symmetry (i.e., axes incident at π / n radians), then st is a rotation by $2 \pi / n$.

To see an explicit example, take $s=r f$ and $t=f$ in D_{n}; obviously $s t=(r f) f=r$.
Thus, D_{n} can be generated by two reflections. This has group presentation

$$
\begin{aligned}
D_{n} & =\left\langle s, t \mid s^{2}=e, t^{2}=e,(s t)^{n}=e\right\rangle \\
& =\{\underbrace{e, s t, t s,(s t)^{2},(t s)^{2}, \ldots}_{\text {rotations }} \underbrace{s, t, s t s, t s t, \ldots}_{\text {reflections }}\} .
\end{aligned}
$$

What would the Cayley diagram corresponding to this generating set look like?

Remark

If $n \geq 3$, then D_{n} is nonabelian, because $r f \neq f r$. However, the following relations are very useful:

$$
r f=f r^{n-1}, \quad f r=r^{n-1} f .
$$

Looking at the Cayley graph should make these relations visually obvious.

Cycle graphs of dihedral groups

The (maximal) orbits of D_{n} consist of
■ 1 orbit of size n consisting of $\left\{e, r, \ldots, r^{n-1}\right\}$;
■ n orbits of size 2 consisting of $\left\{e, r^{k} f\right\}$ for $k=0,1, \ldots, n-1$.
Here is the general pattern of the cycle graphs of the dihedral groups:

Note that the size- n orbit may have smaller subsets that are orbits. For example, $\left\{e, r^{2}, r^{4}, \ldots, r^{n-2}\right\}$ and $\left\{e, r^{n / 2}\right\}$ are orbits if n is even.

Multiplication tables of dihedral groups

The separation of D_{n} into rotations and reflections is also visible in their multiplication tables. For example, here is D_{4} :

	e	r	r^{2}	r^{3}	f	$r f$	$r^{2} f$	$r^{3} f$
e	e	r	r^{2}	r^{3}	f	$r f$	$r^{2} f$	$r^{3} f$
r	r	r^{2}	r^{3}	e	$r f$	$r^{2} f$	$r^{3} f$	f
r^{2}	r^{2}	r^{3}	e	r	$r^{2} f$	$r^{3} f$	f	$r f$
r^{3}	r^{3}	e	r	r^{2}	$r^{3} f$	f	$r f$	$r^{2} f$
f	f	$r^{3} f$	$r^{2} f$	$r f$	e	r^{3}	r^{2}	r
$r f$	$r f$	f	$r^{3} f$	$r^{2} f$	r	e	r^{3}	r^{2}
$r^{2} f$	$r^{2} f$	$r f$	f	$r^{3} f$	r^{2}	r	e	r^{3}
$r^{3} f$	$r^{3} f$	$r^{2} f$	$r f$	f	r^{3}	r^{2}	r	e

e		r	r^{2}	r^{3}	f

As we shall see later, the partition of D_{n} as depicted above forms the structure of the group C_{2}. "Shrinking" a group in this way is called taking a quotient.

It yields a group of order 2 with the following Cayley
 diagram:

