Lecture 3.3: Normal subgroups

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4120, Modern Algebra

Overview

Last time, we learned that for any subgroup $H \leq G$:

- the left cosets of H partition G;
- the right cosets of H partition G;
- these partitions need not be the same.

Here are some visualizations of this idea:

$g_{n} H$
\vdots
$g_{2} H$
$g_{1} H$
H

$H g_{n}$	
$H g_{2}$	\ldots
$H g_{1}$	
H	

Subgroups whose left and right cosets agree have very special properties, and this is the topic of this lecture.

Normal subgroups

Definition

A subgroup H of G is a normal subgroup of G if $g H=H g$ for all $g \in G$. We denote this as $H \triangleleft G$, or $H \unlhd G$.

Observation

Subgroups of abelian groups are always normal, because for any $H<G$,

$$
a H=\{a h: h \in H\}=\{h a: h \in H\}=H a .
$$

Example

Consider the subgroup $H=\langle(0,1)\rangle=\{(0,0),(0,1),(0,2)\}$ in the group $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ and take $g=(1,0)$. Addition is done modulo 3, componentwise. The following depicts the equality $g+H=H+g$:

Normal subgroups of nonabelian groups

Since subgroups of abelian groups are always normal, we will be particularly interested in normal subgroups of non-abelian groups.

Example

Consider the subgroup $N=\left\{e, r, r^{2}\right\} \leq D_{3}$.
The cosets (left or right) of N are $N=\left\{e, r, r^{2}\right\}$ and $N f=\left\{f, r f, r^{2} f\right\}=f N$. The following depicts this equality; the coset $f N=N f$ are the green nodes.

Normal subgroups of nonabelian groups
Here is another way to visualze the normality of the subgroup, $N=\langle r\rangle \leq D_{3}$:

f	$r f$	$r^{2} f$	
	e	r	r^{2}

On contrast, the subgroup $H=\langle f\rangle \leq D_{3}$ is not normal:

Proposition

If H is a subgroup of G of index $[G: H]=2$, then $H \triangleleft G$.

Conjugate subgroups
For a fixed element $g \in G$, the set

$$
g H g^{-1}=\left\{g h g^{-1} \mid h \in H\right\}
$$

is called the conjugate of H by g.

Observation 1

For any $g \in G$, the conjugate $g \mathrm{Hg}^{-1}$ is a subgroup of G.

Proof

1. Identity: $e=g e g^{-1}$. \checkmark
2. Closure: $\left(g h_{1} g^{-1}\right)\left(g h_{2} g^{-1}\right)=g h_{1} h_{2} g^{-1}$. \checkmark
3. Inverses: $\left(g h g^{-1}\right)^{-1}=g h^{-1} g^{-1}$. \checkmark

Observation 2

$g h_{1} g^{-1}=g h_{2} g^{-1}$ if and only if $h_{1}=h_{2}$.
On the homework, you will show that H and gHg^{-1} are isomorphic subgroups. (Though we don't yet know how to do this, or precisely what it means.)

How to check if a subgroup is normal

If $g H=H g$, then right-multiplying both sides by g^{-1} yields $g H^{-1}=H$.
This gives us a new way to check whether a subgroup H is normal in G.

Useful remark

The following conditions are all equivalent to a subgroup $H \leq G$ being normal:
(i) $g H=H g$ for all $g \in G$; ("left cosets are right cosets");
(ii) $g \mathrm{Hg}^{-1}=H$ for all $g \in G$; ("only one conjugate subgroup")
(iii) $\mathrm{ghg}^{-1} \in H$ for all $g \in G$; ("closed under conjugation").

Sometimes, one of these methods is much easier than the others!
For example, all it takes to show that H is not normal is finding one element $h \in H$ for which $g h g^{-1} \notin H$ for some $g \in G$.

As another example, if we happen to know that G has a unique subgroup of size $|H|$, then H must be normal. (Why?)

