Lecture 3.3: Normal subgroups

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 4120, Modern Algebra

Overview

Last time, we learned that for any subgroup $H \leq G$:

- the left cosets of H partition G;
- the right cosets of *H* partition *G*;
- these partitions need not be the same.

Here are some visualizations of this idea:

Subgroups whose left and right cosets agree have very special properties, and this is the topic of this lecture.

Normal subgroups

Definition

A subgroup H of G is a normal subgroup of G if gH = Hg for all $g \in G$. We denote this as $H \triangleleft G$, or $H \trianglelefteq G$.

Observation

Subgroups of abelian groups are always normal, because for any H < G,

$$aH = \{ah: h \in H\} = \{ha: h \in H\} = Ha.$$

Example

Consider the subgroup $H = \langle (0,1) \rangle = \{(0,0), (0,1), (0,2)\}$ in the group $\mathbb{Z}_3 \times \mathbb{Z}_3$ and take g = (1,0). Addition is done modulo 3, componentwise. The following depicts the equality g + H = H + g:

Normal subgroups of nonabelian groups

Since subgroups of abelian groups are always normal, we will be particularly interested in normal subgroups of non-abelian groups.

Example

Consider the subgroup $N = \{e, r, r^2\} \leq D_3$.

The cosets (left or right) of N are $N = \{e, r, r^2\}$ and $Nf = \{f, rf, r^2f\} = fN$. The following depicts this equality; the coset fN = Nf are the green nodes.

Normal subgroups of nonabelian groups

Here is another way to visualze the normality of the subgroup, $N = \langle r \rangle \leq D_3$:

fNfrf
$$r^2 f$$
Nffrf $r^2 f$ Ner r^2 Ner r^2

On contrast, the subgroup $H = \langle f \rangle \leq D_3$ is not normal:

Proposition

If H is a subgroup of G of index [G : H] = 2, then $H \triangleleft G$.

Conjugate subgroups

For a fixed element $g \in G$, the set

$$gHg^{-1} = \{ghg^{-1} \mid h \in H\}$$

is called the conjugate of H by g.

Observation 1

For any $g \in G$, the conjugate gHg^{-1} is a subgroup of G.

Proof

1. Identity:
$$e = geg^{-1}$$
. \checkmark

2. Closure:
$$(gh_1g^{-1})(gh_2g^{-1}) = gh_1h_2g^{-1}$$
.

3. Inverses:
$$(ghg^{-1})^{-1} = gh^{-1}g^{-1}$$
. \checkmark

Observation 2

$$gh_1g^{-1} = gh_2g^{-1}$$
 if and only if $h_1 = h_2$.

On the homework, you will show that H and gHg^{-1} are isomorphic subgroups. (Though we don't yet know how to do this, or precisely what it means.)

How to check if a subgroup is normal

If gH = Hg, then right-multiplying both sides by g^{-1} yields $gHg^{-1} = H$.

This gives us a new way to check whether a subgroup H is normal in G.

Useful remark

The following conditions are all equivalent to a subgroup $H \leq G$ being normal:

(i) gH = Hg for all g ∈ G; ("left cosets are right cosets");
(ii) gHg⁻¹ = H for all g ∈ G; ("only one conjugate subgroup")
(iii) ghg⁻¹ ∈ H for all g ∈ G; ("closed under conjugation").

Sometimes, one of these methods is *much* easier than the others!

For example, all it takes to show that H is not normal is finding one element $h \in H$ for which $ghg^{-1} \notin H$ for some $g \in G$.

As another example, if we happen to know that G has a unique subgroup of size |H|, then H must be normal. (Why?)