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Overview

Previously, we looked for smaller groups lurking inside a group.

Exploring the subgroups of a group gives us insight into the its internal structure.

The next two lectures are about the following topics:

1. direct products: a method for making larger groups from smaller groups.

2. quotients: a method for making smaller groups from larger groups.

Before we begin, we’ll note that we can always form a direct product of two groups.

In constrast, we cannot always take the quotient of two groups. In fact, quotients are
restricted to some pretty specific circumstances, as we shall see.
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Direct products, algebraically
It is easiest to think of direct product of groups algebraically, rather than visually.

If A and B are groups, there is a natural group structure on the set

A× B = {(a, b) | a ∈ A, b ∈ B} .

Definition

The direct product of groups A and B consists of the set A× B, and the group
operation is done component-wise: if (a, b), (c, d) ∈ A× B, then

(a, b) ∗ (c, d) = (ac, bd).

We call A and B the factors of the direct product.

Note that the binary operations on A and B could be different. One might be ∗ and
the other +.

For example, in D3 × Z4:

(r 2, 1) ∗ (fr , 3) = (r 2fr , 1 + 3) = (rf , 0) .

These elements do not commute:

(fr , 3) ∗ (r 2, 1) = (fr 3, 3 + 1) = (f , 0) .
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Direct products, visually

Here’s one way to think of the direct product of two cyclic groups, say Zn × Zm:
Imagine a slot machine with two wheels, one with n spaces (numbered 0 through
n − 1) and the other with m spaces (numbered 0 through m − 1).

The actions are: spin one or both of the wheels. Each action can be labeled by where
we end up on each wheel, say (i , j).

Here is an example for a more general case: the element (r 2, 4) in D4 × Z6.
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Key idea

The direct product of two groups joins them so they act independently of each other.
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Cayley diagrams of direct products

Remark

Just because a group is not written with × doesn’t mean that there isn’t some
hidden direct product structure lurking. For example, V4 is really just C2 × C2.

Here are some examples of direct products:

C3 × C3 C3 × C2 C2 × C2 × C2

Even more surprising, the group C3×C2 is actually isomorphic to the cyclic group C6!

Indeed, the Cayley diagram for C6 using generators r 2 and r 3 is the same as the
Cayley diagram for C3 × C2 above.

We’ll understand this better later in the class when we study homomorphisms. For
now, we will focus our attention on direct products.
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Cayley diagrams of direct products

Let eA be the identity of A and eB the identity of B.

Given a Cayley diagram of A with generators a1, . . . , ak , and a Cayley diagram of B
with generators b1, . . . , b`, we can create a Cayley diagram for A× B as follows:

Vertex set: {(a, b) | a ∈ A, b ∈ B}.
Generators: (a1, eb), . . . , (ak , eb) and (ea, b1), . . . , (ea, b`).

Frequently it is helpful to arrange the vertices in a rectangular grid.

For example, here is a Cayley diagram for
the group Z4 × Z3:

(0, 0) (1, 0) (2, 0) (3, 0)

(0, 1) (1, 1) (2, 1) (3, 1)

(0, 2) (1, 2) (2, 2) (3, 2)

What are the subgroups of Z4 × Z3? There are six (did you find them all?), they are:

Z4 × Z3, {0} × {0}, {0} × Z3, Z4 × {0}, Z2 × Z3, Z2 × {0}.
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Subgroups of direct products

Remark

If H ≤ A, and K ≤ B, then H × K is a subgroup of A× B.

For Z4 × Z3, all subgroups had this form. However, this is not always true.

For example, consider the group Z2 × Z2, which is really just V4. Since Z2 has two
subgroups, the following four sets are subgroups of Z2 × Z2:

Z2 × Z2, {0} × {0}, Z2 × {0} = 〈(1, 0)〉, {0} × Z2 = 〈(0, 1)〉.

However, one subgroup of Z2 × Z2 is missing from this list: 〈(1, 1)〉 = {(0, 0), (1, 1)}.

Exercise

What are the subgroups of Z2 × Z2 × Z2?

Here is a Cayley diagram, writing the elements of the
product as abc rather than (a, b, c).

Hint: There are 16 subgroups!
010
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Direct products, visually
It’s not needed, but one can construct the Cayley diagram of a direct product using
the following “inflation” method.

Inflation algorithm

To make a Cayley diagram of A× B from the Cayley diagrams of A and B:

1. Begin with the Cayley diagram for A.

2. Inflate each node, and place in it a copy of the Cayley diagram for B. (Use
different colors for the two Cayley diagrams.)

3. Remove the (inflated) nodes of A while using the arrows of A to connect
corresponding nodes from each copy of B. That is, remove the A diagram but
treat its arrows as a blueprint for how to connect corresponding nodes in the
copies of B.

Cyclic group Z2 each node contains
a copy of Z4

direct product
group Z4 × Z2
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Properties of direct products

Recall the following definition from the previous lecture.

Definition

A subgroup H < G is normal if xH = Hx for all x ∈ G . We denote this by H C G .

Assuming A and B are not trivial, the direct product A× B has at least four normal
subgroups:

{eA} × {eB} , A× {eB} , {eA} × B , A× B .

Sometimes we “abuse notation” and write AC A× B and B C A× B for the middle
two. (Technically, A and B are not even subsets of A× B.)

Here’s another observation: “A-arrows” are independent of “B-arrows.”

Observation

In a Cayley diagram for A× B, following “A-arrows” neither impacts or is impacted
by the location in group B.

Algebraically, this is just saying that (a, eb) ∗ (ea, b) = (a, b) = (ea, b) ∗ (a, eb).
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Multiplication tables of direct products

Direct products can also be visualized using multiplication tables.

The general process should be clear after seeing the following example; constructing
the table for the group Z4 × Z2:
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multiplication table
for the group Z4
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inflate each cell to contain a copy
of the multiplication table of Z2
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join the little tables and element names
to form the direct product table for Z4×Z2
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