Lecture 3.5: Quotients

Matthew Macauley

Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4120, Modern Algebra

Overview

Direct products make larger groups from smaller groups. It is a way to multiply groups.

The opposite procedure is called taking a quotient. It is a way to divide groups.
Unlike what we did with direct products, we will first describe the quotient operation using Cayley diagrams, and then formalize it algebraically and explore properties of the resulting group.

Definition

To divide a group G by one of its subgroups H, follow these steps:

1. Organize a Cayley diagram of G by H (so that we can "see" the subgroup H in the diagram for G).
2. Collapse each left coset of H into one large node. Unite those arrows that now have the same start and end nodes. This forms a new diagram with fewer nodes and arrows.
3. IF (and only if) the resulting diagram is a Cayley diagram of a group, you have obtained the quotient group of G by H, denoted $G / H($ say: " $G \bmod H$ ".) If not, then G cannot be divided by H.

An example: $\mathbb{Z}_{3}<\mathbb{Z}_{6}$

Consider the group $G=\mathbb{Z}_{6}$ and its normal subgroup $H=\langle 2\rangle=\{0,2,4\}$.
There are two (left) cosets: $H=\{0,2,4\}$ and $1+H=\{1,3,5\}$.
The following diagram shows how to take a quotient of \mathbb{Z}_{6} by H.

\mathbb{Z}_{6} organized by the subgroup $H=\langle 2\rangle$

Left cosets of H are near each other

Collapse cosets into single nodes

In this example, the resulting diagram is a Cayley diagram. So, we can divide \mathbb{Z}_{6} by $\langle 2\rangle$, and we see that \mathbb{Z}_{6} / H is isomorphic to \mathbb{Z}_{2}.

We write this as $\mathbb{Z}_{6} / H \cong \mathbb{Z}_{2}$.

A few remarks

- Step 3 of the Definition says "IF the new diagram is a Cayley diagram ..." Sometimes it won't be, in which case there is no quotient.
- The elements of G / H are the cosets of H. Asking if G / H exists amounts to asking if the set of left (or right) cosets of H forms a group. (More on this later.)

■ In light of this, given any subgroup $H<G$ (normal or not), we will let

$$
G / H:=\{g H \mid g \in G\}
$$

denote the set of left cosets of H in G.
■ Not surprisingly, if $G=A \times B$ and we divide G by A (technically $A \times\{e\}$), the quotient group is B. (We'll see why shortly).

Caveat!

The converse of the previous statement is generally not true. That is, if G / H is a group, then G is in general not a direct product of H and G / H.

An example: $C_{3}<D_{3}$

Consider the group $G=D_{3}$ and its normal subgroup $H=\langle r\rangle \cong C_{3}$.
There are two (left) cosets: $H=\left\{e, r, r^{2}\right\}$ and $f H=\left\{f, r f, r^{2} f\right\}$.
The following diagram shows how to take a quotient of D_{3} by H.

D_{3} organized by the subgroup $H=\langle r\rangle$

Left cosets of H are near each other

Collapse cosets into single nodes

The result is a Cayley diagram for C_{2}, thus

$$
D_{3} / H \cong C_{2} . \quad \text { However. . } \quad C_{3} \times C_{2} \not \approx D_{3}
$$

Note that $C_{3} \times C_{2}$ is abelian, but D_{3} is not.

Example: $G=A_{4}$ and $H=\langle x, z\rangle \cong V_{4}$

Consider the following Cayley diagram for $G=A_{4}$ using generators $\langle a, x\rangle$.

Consider $H=\langle x, z\rangle=\{e, x, y, z\} \cong V_{4}$. This subgroup is not "visually obvious" in this Cayley diagram.

Let's add z to the generating set, and consider the resulting Cayley diagram.

Example: $G=A_{4}$ and $H=\langle x, z\rangle \cong V_{4}$

Here is a Cayley diagram for A_{4} (with generators x, z, and a), organized by the subgroup $H=\langle x, z\rangle$ which allows us to see the left cosets of H clearly.

A_{4} organized by the subgroup $H=\langle x, z\rangle$

Left cosets of H are near each other

Collapse cosets into single nodes

The resulting diagram is a Cayley diagram! Therefore, $A_{4} / H \cong C_{3}$. However, A_{4} is not isomorphic to the (abelian) group $V_{4} \times C_{3}$.

Example: $G=A_{4}$ and $H=\langle a\rangle \cong C_{3}$

Let's see an example where we cannot divide G by a particular subgroup H.

Consider the subgroup $H=\langle a\rangle \cong C_{3}$ of A_{4}.

Do you see what will go wrong if we try to divide A_{4} by $H=\langle a\rangle$?

A_{4} organized by the subgroup $H=\langle a\rangle$

Left cosets of H are near each other

Collapse cosets into single nodes

This resulting diagram is not a Cayley diagram! There are multiple outgoing blue arrows from each node.

When can we divide G by a subgroup H ?

Consider $H=\langle a\rangle \leq A_{4}$ again.
The left cosets are easy to spot.

Remark

The right cosets are not the same as the left cosets! The blue arrows out of any single coset scatter the nodes.

Thus, $H=\langle a\rangle$ is not normal in A_{4}.
If we took the effort to check our first 3 examples, we would find that in each case, the left cosets and right cosets coincide. In those examples, G / H existed, and H was normal in G.

However, these 4 examples do not constitute a proof; they only provide evidence that the claim is true.

When can we divide G by a subgroup H ?

Let's try to gain more insight. Consider a group G with subgroup H. Recall that:
■ each left coset $g H$ is the set of nodes that the H-arrows can reach from g (which looks like a copy of H at g);
■ each right coset Hg is the set of nodes that the g-arrows can reach from H.
The following figure depicts the potential ambiguity that may arise when cosets are collapsed in the sense of our quotient definition.

blue arrows go from $g_{1} H$ to a unique left coset

The action of the blue arrows above illustrates multiplication of a left coset on the right by some element. That is, the picture shows how left and right cosets interact.

When can we divide G by a subgroup H ?

When H is normal, $g H=H g$ for all $g \in G$.
In this case, to whichever coset one g arrow leads from H (the left coset), all g arrows lead unanimously and unambiguously (because it is also a right coset Hg).

Thus, in this case, collapsing the cosets is a well-defined operation.
Finally, we have an answer to our original question of when we can take a quotient.

Quotient theorem

If $H<G$, then the quotient group G / H can be constructed if and only if $H \triangleleft G$.

To summarize our "visual argument": The quotient process succeeds iff the resulting diagram is a valid Cayley diagram.

Nearly all aspects of valid Cayley diagrams are guaranteed by the quotient process: Every node has exactly one incoming and outgoing edge of each color, because $H \triangleleft G$. The diagram is regular too.

Though it's convincing, this argument isn't quite a formal proof; we'll do a rigorous algebraic proof next.

Quotient groups, algebraically

To prove the Quotient Theorem, we need to describe the quotient process algebraically.

Recall that even if H is not normal in G, we will still denote the set of left cosets of H in G by G / H.

Quotient theorem (restated)

When $H \triangleleft G$, the set of cosets G / H forms a group.

This means there is a well-defined binary operation on the set of cosets. But how do we "multipy" two cosets?

If $a H$ and $b H$ are left cosets, define

$$
a H \cdot b H:=a b H .
$$

Clearly, G / H is closed under this operation. But we also need to verify that this definition is well-defined.

By this, we mean that it does not depend on our choice of coset representative.

Quotient groups, algebraically

Lemma

Let $H \triangleleft G$. Multiplication of cosets is well-defined:

$$
\text { if } a_{1} H=a_{2} H \text { and } b_{1} H=b_{2} H \text {, then } a_{1} H \cdot b_{1} H=a_{2} H \cdot b_{2} H \text {. }
$$

Proof

Suppose that $H \triangleleft G, a_{1} H=a_{2} H$ and $b_{1} H=b_{2} H$. Then

$$
\begin{aligned}
a_{1} H \cdot b_{1} H & =a_{1} b_{1} H & & \text { (by definition) } \\
& =a_{1}\left(b_{2} H\right) & & \left(b_{1} H=b_{2} H\right. \text { by assumption) } \\
& =\left(a_{1} H\right) b_{2} & & \left(b_{2} H=H b_{2} \text { since } H \triangleleft G\right) \\
& =\left(a_{2} H\right) b_{2} & & \left(a_{1} H=a_{2} H\right. \text { by assumption) } \\
& =a_{2} b_{2} H & & \left(b_{2} H=H b_{2} \text { since } H \triangleleft G\right) \\
& =a_{2} H \cdot b_{2} H & & \text { (by definition) }
\end{aligned}
$$

Thus, the binary operation on G / H is well-defined.

Quotient groups, algebraically

Quotient theorem (restated)

When $H \triangleleft G$, the set of cosets G / H forms a group.

Proof

There is a well-defined binary operation on the set of left (equivalently, right) cosets: $a H \cdot b H=a b H$. We need to verify the three remaining properties of a group:

Identity. The coset $H=e H$ is the identity because for any coset $a H \in G / H$,

$$
a H \cdot H=a e H=a H=e a H=H \cdot a H .
$$

Inverses. Given a coset $a H$, its inverse is $a^{-1} H$, because

$$
a H \cdot a^{-1} H=e H=a^{-1} H \cdot a H .
$$

Closure. This is immediate, because $a H \cdot b H=a b H$ is another coset in G / H.

Properties of quotients

Question

If H and K are subgroups and $H \cong K$, then are G / H and G / K isomorphic?

For example, here is a Cayley diagram for the group $\mathbb{Z}_{4} \times \mathbb{Z}_{2}$:

It is visually obvious that the quotient of $\mathbb{Z}_{4} \times \mathbb{Z}_{2}$ by the subgroup $\langle(0,1)\rangle \cong \mathbb{Z}_{2}$ is the group \mathbb{Z}_{4}.

The quotient of $\mathbb{Z}_{4} \times \mathbb{Z}_{2}$ by the subgroup $\langle(2,0)\rangle \cong \mathbb{Z}_{2}$ is a bit harder to see. Algebraically, it consists of the cosets

$$
\langle(2,0)\rangle, \quad(1,0)+\langle(2,0)\rangle, \quad(0,1)+\langle(2,0)\rangle, \quad(1,1)+\langle(2,0)\rangle
$$

It is now apparent that this group is isomorphic to V_{4}.
Thus, the answer to the question above is "no." Surprised?

