Lecture 3.6: Normalizers

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 4120, Modern Algebra

Motivation

Question

If H < G but H is not normal, can we measure "how far" H is from being normal?

Recall that $H \triangleleft G$ iff gH = Hg for all $g \in G$. So, one way to answer our question is to check how many $g \in G$ satisfy this requirement. Imagine that each $g \in G$ is voting as to whether H is normal:

$$gH = Hg$$
 "yea" $gH \neq Hg$ "nay"

At a *minimum*, every $g \in H$ votes "yea." (Why?)

At a maximum, every $g \in G$ could vote "yea," but this only happens when H really is normal.

There can be levels between these 2 extremes as well.

Definition

The set of elements in G that vote in favor of H's normality is called the normalizer of H in G, denoted $N_G(H)$. That is,

$$N_G(H) = \{g \in G : gH = Hg\} = \{g \in G : gHg^{-1} = H\}.$$

Normalizers

Let's explore some possibilities for what the normalizer of a subgroup can be. In particular, is it a subgroup?

Observation 1

If $g \in N_G(H)$, then $gH \subseteq N_G(H)$.

Proof

If gH = Hg, then gH = bH for all $b \in gH$. Therefore, bH = gH = Hg = Hb.

The deciding factor in how a left coset votes is whether it is a right coset (members of gH vote as a block – exactly when gH = Hg).

Observation 2

 $|N_G(H)|$ is a multiple of |H|.

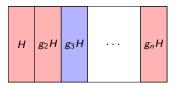
Proof

By Observation 1, $N_G(H)$ is made up of whole (left) cosets of H, and all (left) cosets are the same size and disjoint.

M. Macauley (Clemson)

Normalizers

Consider a subgroup $H \leq G$ of index *n*. Suppose that the left and right cosets partition *G* as shown below:



Partition of G by the left cosets of H

Partition of G by the right cosets of H

The cosets H, and $g_2H = Hg_2$, and $g_nH = Hg_n$ all vote "yea".

The left coset g_3H votes "nay" because $g_3H \neq Hg_3$.

Assuming all other cosets vote "nay", the normalizer of H is

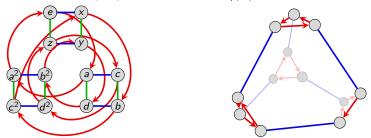
$$N_G(H)=H\cup g_2H\cup g_nH.$$

In summary, the two "extreme cases" for $N_G(H)$ are:

N_G(H) = G: iff H is a normal subgroup
N_G(H) = H: H is as "unnormal as possible"

An example: A_4

We saw earlier that $H = \langle \mathbf{x}, z \rangle \triangleleft A_4$. Therefore, $N_{A_4}(H) = A_4$.



At the other extreme, consider $\langle a \rangle < A_4$ again, which is as far from normal as it can possibly be: $\langle a \rangle \not \lhd A_4$.

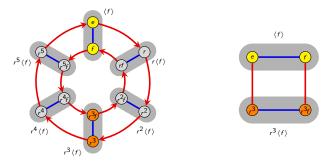
No right coset of $\langle a \rangle$ coincides with a left coset, other than $\langle a \rangle$ itself. Thus, $N_{A_4}(\langle a \rangle) = \langle a \rangle$.

Observation 3

In the Cayley diagram of G, the normalizer of H consists of the copies of H that are connected to H by unanimous arrows.

How to spot the normalizer in the Cayley diagram

The following figure depicts the six left cosets of $H = \langle f \rangle = \{e, f\}$ in D_6 .



Note that $r^{3}H$ is the *only* coset of H (besides H, obviously) that cannot be reached from H by more than one element of D_{6} .

Thus, $N_{D_6}(\langle f \rangle) = \langle f \rangle \cup r^3 \langle f \rangle = \{e, f, r^3, r^3 f\} \cong V_4.$

Observe that the normalizer is also a subgroup satisfying: $\langle f \rangle \leq N_{D_6}(\langle f \rangle) \leq D_6$.

Do you see the pattern for $N_{D_n}(\langle f \rangle)$? (It depends on whether *n* is even or odd.)

Normalizers are subgroups!

Theorem

For any H < G, we have $N_G(H) < G$.

Proof (different than VGT!)

Recall that $N_G(H) = \{g \in G \mid gHg^{-1} = H\}$; "the set of elements that normalize H." We need to verify three properties of $N_G(H)$:

- (i) Contains the identity;
- (ii) Inverses exist;
- (iii) Closed under the binary operation.

Identity. Naturally, $eHe^{-1} = \{ehe^{-1} \mid h \in H\} = H$.

Inverses. Suppose $g \in N_G(H)$, which means $gHg^{-1} = H$. We need to show that $g^{-1} \in N_G(H)$. That is, $g^{-1}H(g^{-1})^{-1} = g^{-1}Hg = H$. Indeed,

$$g^{-1}Hg = g^{-1}(gHg^{-1})g = eHe = H$$
.

Normalizers are subgroups!

Proof (cont.)

Closure. Suppose $g_1, g_2 \in N_G(H)$, which means that $g_1Hg_1^{-1} = H$ and $g_2Hg_2^{-1} = H$. We need to show that $g_1g_2 \in N_G(H)$.

$$(g_1g_2)H(g_1g_2)^{-1} = g_1g_2Hg_2^{-1}g_1^{-1} = g_1(g_2Hg_2^{-1})g_1^{-1} = g_1Hg_1^{-1} = H$$
.

Since $N_G(H)$ contains the identity, every element has an inverse, and is closed under the binary operation, it is a (sub)group!

Corollary

Every subgroup is normal in its normalizer:

 $H \lhd N_G(H) \leq G$.

Proof

By definition, gH = Hg for all $g \in N_G(H)$. Therefore, $H \triangleleft N_G(H)$.