Lecture 3.7: Conjugacy classes

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4120, Modern Algebra

Overview

Recall that for $H \leq G$, the conjugate subgroup of H by a fixed $g \in G$ is

$$
g H g^{-1}=\left\{g h g^{-1} \mid h \in H\right\} .
$$

Additionally, H is normal iff $\mathrm{gHg}^{-1}=H$ for all $g \in G$.
We can also fix the element we are conjugating. Given $x \in G$, we may ask:
"which elements can be written as $g \times g^{-1}$ for some $g \in G$?'
The set of all such elements in G is called the conjugacy class of x, denoted $\mathrm{cl}_{G}(x)$.
Formally, this is the set

$$
\mathrm{cl}_{G}(x)=\left\{\mathrm{gxg}^{-1} \mid g \in G\right\} .
$$

Remarks

- In any group, $\mathrm{cl}_{G}(e)=\{e\}$, because $\mathrm{geg}^{-1}=e$ for any $g \in G$.
- If x and g commute, then $g \times g^{-1}=x$. Thus, when computing $\mathrm{cl}_{G}(x)$, we only need to check gxg^{-1} for those $g \in G$ that do not commute with x.
- Moreover, $\mathrm{cl}_{G}(x)=\{x\}$ iff x commutes with everything in G. (Why?)

Conjugacy classes

Lemma

Conjugacy is an equivalence relation.

Proof

- Reflexive: $x=e x e^{-1}$.
- Symmetric: $x=g y g^{-1} \Rightarrow y=g^{-1} x g$.
- Transitive: $x=g y g^{-1}$ and $y=h z h^{-1} \Rightarrow x=(g h) z(g h)^{-1}$.

Since conjugacy is an equivalence relation, it partitions the group G into equivalence classes (conjugacy classes).

Let's compute the conjugacy classes in D_{4}. We'll start by finding $\mathrm{cl}_{D_{4}}(r)$. Note that we only need to compute grg^{-1} for those g that do not commute with r :

$$
f r f^{-1}=r^{3}, \quad(r f) r(r f)^{-1}=r^{3}, \quad\left(r^{2} f\right) r\left(r^{2} f\right)^{-1}=r^{3}, \quad\left(r^{3} f\right) r\left(r^{3} f\right)^{-1}=r^{3}
$$

Therefore, the conjugacy class of r is $\mathrm{cl}_{D_{4}}(r)=\left\{r, r^{3}\right\}$.
Since conjugacy is an equivalence relation, $\mathrm{cl}_{D_{4}}\left(r^{3}\right)=\mathrm{cl}_{D_{4}}(r)=\left\{r, r^{3}\right\}$.

Conjugacy classes in D_{4}

To compute $\mathrm{cl}_{D_{4}}(f)$, we don't need to check e, r^{2}, f, or $r^{2} f$, since these all commute with f :

$$
r f r^{-1}=r^{2} f, \quad r^{3} f\left(r^{3}\right)^{-1}=r^{2} f, \quad(r f) f(r f)^{-1}=r^{2} f, \quad\left(r^{3} f\right) f\left(r^{3} f\right)^{-1}=r^{2} f
$$

Therefore, $\mathrm{cl}_{D_{4}}(f)=\left\{f, r^{2} f\right\}$.
What is $\mathrm{cl}_{D_{4}}(r f)$? Note that it has size greater than 1 because $r f$ does not commute with everything in D_{4}.

It also cannot contain elements from the other conjugacy classes. The only element left is $r^{3} f$, so cl $D_{D_{4}}(r f)=\left\{r f, r^{3} f\right\}$.

The "Class Equation", visually:
Partition of D_{4} by its conjugacy classes

We can write $D_{4}=\underbrace{\{e\} \cup\left\{r^{2}\right\}} \cup\left\{r, r^{3}\right\} \cup\left\{f, r^{2} f\right\} \cup\left\{r, r^{3} f\right\}$. these commute with everything in D_{4}

The class equation

Definition

The center of G is the set $Z(G)=\{z \in G \mid g z=z g, \forall g \in G\}$.

Observation
 $\mathrm{cl}_{G}(x)=\{x\}$ if and only if $x \in Z(G)$.

Proof

Suppose x is in its own conjugacy class. This means that

$$
\mathrm{cl}_{G}(x)=\{x\} \Longleftrightarrow g \times g^{-1}=x, \forall g \in G \Longleftrightarrow g x=x g, \forall g \in G \Longleftrightarrow x \in Z(G) .
$$

The Class Equation

For any finite group G,

$$
|G|=|Z(G)|+\sum\left|\mathrm{cl}_{G}\left(x_{i}\right)\right|
$$

where the sum is taken over distinct conjugacy classes of size greater than 1 .

More on conjugacy classes

Proposition

Every normal subgroup is the union of conjugacy classes.

Proof

Suppose $n \in N \triangleleft G$. Then $g n g^{-1} \in g N g^{-1}=N$, thus if $n \in N$, its entire conjugacy class $\mathrm{Cl}_{G}(n)$ is contained in N as well.

Proposition

Conjugate elements have the same order.

Proof

Consider x and $y=g x g^{-1}$.
If $x^{n}=e$, then $\left(g \times g^{-1}\right)^{n}=\left(g \times g^{-1}\right)\left(g \times g^{-1}\right) \cdots\left(g \times g^{-1}\right)=g x^{n} g^{-1}=g e g^{-1}=e$.
Therefore, $|x| \geq\left|g \times g^{-1}\right|$.
Conversely, if $\left(g \times g^{-1}\right)^{n}=e$, then $g x^{n} g^{-1}=e$, and it must follow that $x^{n}=e$. Therefore, $|x| \leq\left|g \times g^{-1}\right|$.

Conjugacy classes in D_{6}

Let's determine the conjugacy classes of $D_{6}=\left\langle r, f \mid r^{6}=e, f^{2}=e, r^{i} f=f r^{-i}\right\rangle$.
The center of D_{6} is $Z\left(D_{6}\right)=\left\{e, r^{3}\right\}$; these are the only elements in size-1 conjugacy classes.

The only two elements of order 6 are r and r^{5}; so we must have $\mathrm{cl}_{D_{6}}(r)=\left\{r, r^{5}\right\}$.
The only two elements of order 3 are r^{2} and r^{4}; so we must have $\mathrm{cl}_{D_{6}}\left(r^{2}\right)=\left\{r^{2}, r^{4}\right\}$.
Let's compute the conjugacy class of a reflection $r^{i} f$. We need to consider two cases; conjugating by r^{j} and by $r^{j} f$:

- $r^{j}\left(r^{i} f\right) r^{-j}=r^{j} r^{i} r^{j} f=r^{i+2 j} f$

■ $\left(r^{j} f\right)\left(r^{i} f\right)\left(r^{j} f\right)^{-1}=\left(r^{j} f\right)\left(r^{i} f\right) f r^{-j}=r^{j} f r^{i-j}=r^{j} r^{j-i} f=r^{2 j-i} f$.
Thus, $r^{i} f$ and $r^{k} f$ are conjugate iff i and k are both even, or both odd.

The Class Equation, visually:
Partition of D_{6} by its conjugacy classes

e	r	r^{2}	f	$r^{2} f$	$r^{4} f$
r^{3}	r^{5}	r^{4}	$r f$	$r^{3} f$	$r^{5} f$

Conjugacy "preserves structure"

Think back to linear algebra. Two matrices A and B are similar (=conjugate) if $A=P B P^{-1}$.

Conjugate matrices have the same eigenvalues, eigenvectors, and determinant. In fact, they represent the same linear map, but under a change of basis.

If n is even, then there are two "types" of reflections of an n-gon: the axis goes through two corners, or it bisects a pair of sides.

Notice how in D_{n}, conjugate reflections have the same "type." Do you have a guess of what the conjugacy classes of reflections are in D_{n} when n is odd?

Also, conjugate rotations in D_{n} had the same rotating angle, but in the opposite direction (e.g., r^{k} and r^{n-k}).

Next, we will look at conjugacy classes in the symmetric group S_{n}. We will see that conjugate permutations have "the same structure."

Cycle type and conjugacy

Definition

Two elements in S_{n} have the same cycle type if when written as a product of disjoint cycles, there are the same number of length- k cycles for each k.

We can write the cycle type of a permutation $\sigma \in S_{n}$ as a list $c_{1}, c_{2}, \ldots, c_{n}$, where c_{i} is the number of cycles of length i in σ.

Here is an example of some elements in S_{9} and their cycle types.
■ (18) (5) (23) (4967) has cycle type 1,2,0,1.
■ (184234967) has cycle type 0,0,0,0,0,0,0,0,1.
■ $e=(1)(2)(3)(4)(5)(6)(7)(8)(9)$ has cycle type 9.

Theorem

Two elements $g, h \in S_{n}$ are conjugate if and only if they have the same cycle type.

Big idea

Conjugate permutations have the same structure. Such permutations are the same up to renumbering.

An example

Consider the following permutations in $G=S_{6}$:

$$
\begin{aligned}
& g=\left(\begin{array}{ll}
1 & 2
\end{array}\right) \\
& h=\left(\begin{array}{llll}
2 & 3
\end{array}\right) \\
& r=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5
\end{array}\right)
\end{aligned}
$$

Since g and h have the same cycle type, they are conjugate:

$$
(123456)(23)(165432)=(12)
$$

Here is a visual interpretation of $g=r h r^{-1}$:

