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Motivation

Throughout the course, we’ve said things like:

“This group has the same structure as that group.”

“This group is isomorphic to that group.”

However, we’ve never really spelled out the details about what this means.

We will study a special type of function between groups, called a homomorphism. An
isomorphism is a special type of homomorphism. The Greek roots “homo” and
“morph” together mean “same shape.”

There are two situations where homomorphisms arise:

when one group is a subgroup of another;

when one group is a quotient of another.

The corresponding homomorphisms are called embeddings and quotient maps.

Also in this chapter, we will completely classify all finite abelian groups, and get a
taste of a few more advanced topics, such as the the four “isomorphism theorems,”
commutators subgroups, and automorphisms.
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A motivating example
Consider the statement: Z3 < D3. Here is a visual:
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0 7→ e

1 7→ r

2 7→ r 2

The group D3 contains a size-3 cyclic subgroup 〈r〉, which is identical to Z3 in
structure only. None of the elements of Z3 (namely 0, 1, 2) are actually in D3.

When we say Z3 < D3, we really mean is that the structure of Z3 shows up in D3.

In particular, there is a bijective correspondence between the elements in Z3 and
those in the subgroup 〈r〉 in D3. Furthermore, the relationship between the
corresponding nodes is the same.

A homomorphism is the mathematical tool for succinctly expressing precise structural
correspondences. It is a function between groups satisfying a few “natural”
properties.
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Homomorphisms

Using our previous example, we say that
this function maps elements of Z3 to
elements of D3. We may write this as

φ : Z3 −→ D3 .
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φ(n) = rn

The group from which a function originates is the domain (Z3 in our example). The
group into which the function maps is the codomain (D3 in our example).

The elements in the codomain that the function maps to are called the image of the
function ({e, r , r 2} in our example), denoted Im(φ). That is,

Im(φ) = φ(G) = {φ(g) | g ∈ G} .
Definition

A homomorphism is a function φ : G → H between two groups satisfying

φ(ab) = φ(a)φ(b), for all a, b ∈ G .

Note that the operation a · b is occurring in the domain while φ(a) · φ(b) occurs in
the codomain.
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Homomorphisms

Remark

Not every function from one group to another is a homomorphism! The condition
φ(ab) = φ(a)φ(b) means that the map φ preserves the structure of G .

The φ(ab) = φ(a)φ(b) condition has visual interpretations on the level of Cayley
diagrams and multiplication tables.

Multiplication

tables

Cayley
diagrams

ab = c

Domain
a

c

b

a

b

c

Codomain
φ(a)

φ(c)

φ(b)
φ

φ

φ(a)φ(b)=φ(c)

φ(a)

φ(b)

φ(c)

Note that in the Cayley diagrams, b and φ(b) are paths; they need not just be edges.
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An example
Consider the function φ that reduces an integer modulo 5:

φ : Z −→ Z5 , φ(n) = n (mod 5).

Since the group operation is additive, the “homomorphism property” becomes

φ(a + b) = φ(a) + φ(b) .

In plain English, this just says that one can “first add and then reduce modulo 5,”
OR “first reduce modulo 5 and then add.”

Addition
tables

Cayley
diagrams

Domain: Z
19

27

8

19

8

27

Codomain: Z5

4

2

3
φ

φ 4

3

2
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Types of homomorphisms

Consider the following homomorphism θ : Z3 → C6, defined by θ(n) = r 2n:

0
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e

r

r2

r3

r4

r5
0 7→ e

1 7→ r2

2 7→ r4

It is easy to check that θ(a + b) = θ(a)θ(b): The red-arrow in Z3 (representing 1)
gets mapped to the 2-step path representing r 2 in C6.

A homomorphism φ : G → H that is one-to-one or “injective” is called an
embedding: the group G “embeds” into H as a subgroup. If θ is not one-to-one,
then it is a quotient.

If φ(G) = H, then φ is onto, or surjective.

Definition

A homomorphism that is both injective and surjective is an an isomorphism.

An automorphism is an isomorphism from a group to itself.
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Homomorphisms and generators

Remark

If we know where a homomorphism maps the generators of G , we can determine
where it maps all elements of G .

For example, suppose φ : Z3 → Z6 was a homomorphism, with φ(1) = 4. Using this
information, we can construct the rest of φ:

φ(2) = φ(1 + 1) = φ(1) + φ(1) = 4 + 4 = 2

φ(0) = φ(1 + 2) = φ(1) + φ(2) = 4 + 2 = 0.

Example

Suppose that G = 〈a, b〉, and φ : G → H, and we know φ(a) and φ(b). Using this
information we can determine the image of any element in G . For example, for
g = a3b2ab, we have

φ(g) = φ(aaabbab) = φ(a)φ(a)φ(a)φ(b)φ(b)φ(a)φ(b).

What do you think φ(a−1) is?
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Two basic properties of homomorphisms

Proposition

Let φ : G → H be a homomorphism. Denote the identity of G by 1G , and the
identity of H by 1H .

(i) φ(1G ) = 1H “φ sends the identity to the identity”

(ii) φ(g−1) = φ(g)−1 “φ sends inverses to inverses”

Proof

(i) Pick any g ∈ G . Now, φ(g) ∈ H; observe that that

φ(1G )φ(g) = φ(1G · g) = φ(g) = 1H · φ(g) .

Therefore, φ(1G ) = 1H . X

(ii) Take any g ∈ G . Observe that

φ(g)φ(g−1) = φ(gg−1) = φ(1G ) = 1H .

Since φ(g)φ(g−1) = 1H , it follows immediately that φ(g−1) = φ(g)−1. X �
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A word of caution

Just because a homomorphism φ : G → H is determined by the image of its
generators does not mean that every such image will work.

For example, suppose we try to define a homomorphism φ : Z3 → Z4 by φ(1) = 1.
Then we get

φ(2) = φ(1 + 1) = φ(1) + φ(1) = 2,

φ(0) = φ(1 + 1 + 1) = φ(1) + φ(1) + φ(1) = 3 .

This is impossible, because φ(0) = 0. (Identity is mapped to the identity.)

That’s not to say that there isn’t a homomorphism φ : Z3 → Z4; note that there is
always the trivial homomorphism between two groups:

φ : G −→ H , φ(g) = 1H for all g ∈ G .

Exercise

Show that there is no embedding φ : Zn ↪→ Z, for n ≥ 2. That is, any such
homomorphism must satisfy φ(1) = 0.
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Isomorphisms

Two isomorphic groups may name their elements differently and may look different
based on the layouts or choice of generators for their Cayley diagrams, but the
isomorphism between them guarantees that they have the same structure.

When two groups G and H have an isomorphism between them, we say that G and
H are isomorphic, and write G ∼= H.

The roots of the polynomial f (x) = x4 − 1 are called the 4th roots of unity, and
denoted R(4) := {1, i ,−1,−i}. They are a subgroup of C∗ := C \ {0}, the nonzero
complex numbers under multiplication.

The following map is an isomorphism between Z4 and R(4).

φ : Z4 −→ R(4) , φ(k) = ik .

0

1

2

3
1

i

−1

−i
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Isomorphisms

Sometimes, the isomorphism is less visually obvious because the Cayley graphs have
different structure.

For example, the following is an isomorphism:

φ : Z6 −→ C6

φ(k) = r k

0

1

2

3

4

5
r3

r5r

1

r4 r2

Here is another non-obvious isomorphism between S3 = 〈(12), (23)〉 and D3 = 〈r , f 〉.

1
3 2

f
r2f

r

φ : S3 −→ D3

φ : (12) 7−→ r 2f

φ : (23) 7−→ f

e

(12)

(132)

(13)

(132)

(23) f

rfr2f

e

r2 r
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Another example: the quaternions

Let GLn(R) be the set of invertible n × n matrices with real-valued entries. It is easy
to see that this is a group under multiplication.

Recall the quaternion group Q4 = 〈i , j , k | i2 = j2 = k2 = −1, ij = k〉.

The following set of 8 matrices forms an isomorphic group under multiplication,
where I is the 4× 4 identity matrix:{

±I , ±

[
0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

]
, ±

[
0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

]
, ±

[
0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

]}
.

Formally, we have an embedding φ : Q4 → GL4(R) where

φ(i) =

[
0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

]
, φ(j) =

[
0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

]
, φ(k) =

[
0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

]
.

We say that Q4 is represented by a set of matrices.

Many other groups can be represented by matrices. Can you think of how to
represent V4, Cn, or Sn, using matrices?
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