Lecture 4.2: Kernels

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 4120, Modern Algebra

Quotient maps

Consider a homomorphism where more than one element of the domain maps to the same element of codomain (i.e., non-embeddings).

Here are some examples.

Non-embedding homomorphisms are called quotient maps (as we'll see, they correspond to our quotient process).

Preimages

Definition

If $\phi: G \to H$ is a homomorphism and $h \in Im(\phi) < H$, define the preimage of h to be the set

$$\phi^{-1}(h) := \{g \in G : \phi(g) = h\}$$
 .

Observe in the previous examples that the preimages all had the same structure. This always happens.

The preimage of $1_H \in H$ is called the kernel of ϕ , denoted Ker ϕ .

Preimages

Observation 1

All preimages of ϕ have the same structure.

Proof (sketch)

Pick two elements $a, b \in \phi(G)$, and let $A = \phi^{-1}(a)$ and $B = \phi^{-1}(b)$ be their preimages.

Consider any path $a_1 \xrightarrow{p} a_2$ between elements in A. For any $b_1 \in B$, there is a corresponding path $b_1 \xrightarrow{p} b_2$. We need to show that $b_2 \in B$.

Since homomorphisms preserve structure, $\phi(a_1) \xrightarrow{\phi(p)} \phi(a_2)$. Since $\phi(a_1) = \phi(a_2)$, $\phi(p)$ is the *empty path*.

Therefore, $\phi(b_1) \xrightarrow{\phi(p)} \phi(b_2)$, i.e., $\phi(b_1) = \phi(b_2)$, and so by definition, $b_2 \in B$.

Clearly, G is partitioned by preimages of ϕ . Additionally, we just showed that they all have the same structure. (Sound familiar?)

Preimages and kernels

Definition

The kernel of a homomorphism $\phi: G \to H$ is the set

$${\sf Ker}(\phi):=\phi^{-1}(e)=\{k\in {\sf G}:\phi(k)=e\}\,.$$

Observation 2

- (i) The preimage of the identity (i.e., $K = \text{Ker}(\phi)$) is a subgroup of G.
- (ii) All other preimages are left cosets of K.

Proof (of (i))

Let $K = \text{Ker}(\phi)$, and take $a, b \in K$. We must show that K satisfies 3 properties: *Identity*: $\phi(e) = e$. \checkmark *Closure*: $\phi(ab) = \phi(a)\phi(b) = e \cdot e = e$. \checkmark *Inverses*: $\phi(a^{-1}) = \phi(a)^{-1} = e^{-1} = e$. \checkmark

Thus, K is a subgroup of G.

Kernels

Observation 3 $Ker(\phi)$ is a normal subgroup of *G*.

Proof

Let $K = \text{Ker}(\phi)$. We will show that if $k \in K$, then $gkg^{-1} \in K$. Take any $g \in G$, and observe that

$$\phi(gkg^{-1}) = \phi(g) \phi(k) \phi(g^{-1}) = \phi(g) \cdot e \cdot \phi(g^{-1}) = \phi(g) \phi(g)^{-1} = e$$

Therefore, $gkg^{-1} \in \text{Ker}(\phi)$, so $K \lhd G$.

Key observation

Given any homomorphism $\phi \colon G \to H$, we can *always* form the quotient group $G/\operatorname{Ker}(\phi)$.

Quotients: via multiplication tables

Recall that $C_2 = \{e^{0\pi i}, e^{1\pi i}\} = \{1, -1\}$. Consider the following (quotient) homomorphism:

 $\phi: D_4 \longrightarrow C_2$, defined by $\phi(r) = 1$ and $\phi(f) = -1$.

Note that $\phi(\text{rotation}) = 1$ and $\phi(\text{reflection}) = -1$.

The quotient process of "shrinking D_4 down to C_2 " can be clearly seen from the multiplication tables.

Quotients: via Cayley diagrams

Define the homomorphism $\phi: Q_4 \to V_4$ via $\phi(i) = v$ and $\phi(j) = h$. Since $Q_4 = \langle i, j \rangle$, we can determine where ϕ sends the remaining elements:

$$\begin{split} \phi(1) &= e , & \phi(-1) = \phi(i^2) = \phi(i)^2 = v^2 = e , \\ \phi(k) &= \phi(ij) = \phi(i)\phi(j) = vh = r , & \phi(-k) = \phi(ji) = \phi(j)\phi(i) = hv = r , \\ \phi(-i) &= \phi(-1)\phi(i) = ev = v , & \phi(-j) = \phi(-1)\phi(j) = eh = h . \end{split}$$

Note that Ker $\phi = \{-1, 1\}$. Let's see what happens when we quotient out by Ker ϕ :

Do you notice any relationship between $Q_4/\operatorname{Ker}(\phi)$ and $\operatorname{Im}(\phi)$?