Lecture 4.2: Kernels

Matthew Macauley

Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4120, Modern Algebra

Quotient maps

Consider a homomorphism where more than one element of the domain maps to the same element of codomain (i.e., non-embeddings).

Here are some examples.

Non-embedding homomorphisms are called quotient maps (as we'll see, they correspond to our quotient process).

Preimages

Definition

If $\phi: G \rightarrow H$ is a homomorphism and $h \in \operatorname{Im}(\phi)<H$, define the preimage of h to be the set

$$
\phi^{-1}(h):=\{g \in G: \phi(g)=h\} .
$$

Observe in the previous examples that the preimages all had the same structure. This always happens.

The preimage of $1_{H} \in H$ is called the kernel of ϕ, denoted $\operatorname{Ker} \phi$.

Preimages

Observation 1

All preimages of ϕ have the same structure.

Proof (sketch)

Pick two elements $a, b \in \phi(G)$, and let $A=\phi^{-1}(a)$ and $B=\phi^{-1}(b)$ be their preimages.

Consider any path $a_{1} \xrightarrow{p} a_{2}$ between elements in A. For any $b_{1} \in B$, there is a corresponding path $b_{1} \xrightarrow{p} b_{2}$. We need to show that $b_{2} \in B$.

Since homomorphisms preserve structure, $\phi\left(a_{1}\right) \xrightarrow{\phi(p)} \phi\left(a_{2}\right)$. Since $\phi\left(a_{1}\right)=\phi\left(a_{2}\right)$, $\phi(p)$ is the empty path.

Therefore, $\phi\left(b_{1}\right) \xrightarrow{\phi(p)} \phi\left(b_{2}\right)$, i.e., $\phi\left(b_{1}\right)=\phi\left(b_{2}\right)$, and so by definition, $b_{2} \in B$.

Clearly, G is partitioned by preimages of ϕ. Additionally, we just showed that they all have the same structure. (Sound familiar?)

Preimages and kernels

Definition

The kernel of a homomorphism $\phi: G \rightarrow H$ is the set

$$
\operatorname{Ker}(\phi):=\phi^{-1}(e)=\{k \in G: \phi(k)=e\} .
$$

Observation 2

(i) The preimage of the identity (i.e., $K=\operatorname{Ker}(\phi)$) is a subgroup of G.
(ii) All other preimages are left cosets of K.

Proof (of (i))

Let $K=\operatorname{Ker}(\phi)$, and take $a, b \in K$. We must show that K satisfies 3 properties: Identity: $\phi(e)=e$.

Closure: $\phi(a b)=\phi(a) \phi(b)=e \cdot e=e$.
Inverses: $\phi\left(a^{-1}\right)=\phi(a)^{-1}=e^{-1}=e$.
Thus, K is a subgroup of G.

Kernels

Observation 3

$\operatorname{Ker}(\phi)$ is a normal subgroup of G.

Proof

Let $K=\operatorname{Ker}(\phi)$. We will show that if $k \in K$, then $g k g^{-1} \in K$. Take any $g \in G$, and observe that

$$
\phi\left(g k g^{-1}\right)=\phi(g) \phi(k) \phi\left(g^{-1}\right)=\phi(g) \cdot e \cdot \phi\left(g^{-1}\right)=\phi(g) \phi(g)^{-1}=e .
$$

Therefore, $\operatorname{gkg}^{-1} \in \operatorname{Ker}(\phi)$, so $K \triangleleft G$.

Key observation

Given any homomorphism $\phi: G \rightarrow H$, we can always form the quotient group $G / \operatorname{Ker}(\phi)$.

Quotients: via multiplication tables

Recall that $C_{2}=\left\{e^{0 \pi i}, e^{1 \pi i}\right\}=\{1,-1\}$. Consider the following (quotient) homomorphism:

$$
\phi: D_{4} \longrightarrow C_{2}, \quad \text { defined by } \phi(r)=1 \text { and } \phi(f)=-1 .
$$

Note that $\phi($ rotation $)=1$ and $\phi($ reflection $)=-1$.
The quotient process of "shrinking D_{4} down to C_{2} " can be clearly seen from the multiplication tables.

	e	r	r^{2}	r^{3}	f	$r f$	$r^{2} f$	$r^{3} f$
e	e	r	r^{2}	r^{3}	f	$r f$	$r^{2} f$	$r^{3} f$
r	r	r^{2}	r^{3}	e	$r f$	$r^{2} f$	$r^{3} f$	f
r^{2}	r^{2}	r^{3}	e	r	r^{2}	$r^{3} f$	f	$r f$
r^{3}	r^{3}	e	r	r^{2}	$r^{3} f$	f	$r f$	$r^{2} f$
f	f	$r^{3} f$	$r^{2} f$	$r f$	e	r^{3}	r^{2}	r
$r f$	$r f$	f	$r^{3} f$	$r^{2} f$	r	e	r^{3}	r^{2}
$r^{2} f$	$r^{2} f$	$r f$	f	$r^{3} f$	r^{2}	r	e	r^{3}
$r^{3} f$	$r^{3} f$	$r^{2} f$	$r f$	f	r^{3}	r^{2}	r	e

	e	r	r^{2}	r^{3}	f	rf		
e	e	r	r^{2}	r^{3}	f			
r^{2}	\mathbf{n}	On	-111					rf
r^{3}	r^{3}	e		r^{2}	r^{3}	f		
f				rf		r^{3}	r^{2}	
$r f$ $r^{2} f$		fli		$r^{3} f$				
$r^{3} f$	r^{3}		rf	f	r^{3}	r^{2}	r	e

Quotients: via Cayley diagrams

Define the homomorphism $\phi: Q_{4} \rightarrow V_{4}$ via $\phi(i)=v$ and $\phi(j)=h$. Since $Q_{4}=\langle i, j\rangle$, we can determine where ϕ sends the remaining elements:

$$
\begin{array}{ll}
\phi(1)=e, & \phi(-1)=\phi\left(i^{2}\right)=\phi(i)^{2}=v^{2}=e, \\
\phi(k)=\phi(i j)=\phi(i) \phi(j)=v h=r, & \phi(-k)=\phi(j i)=\phi(j) \phi(i)=h v=r, \\
\phi(-i)=\phi(-1) \phi(i)=e v=v, & \phi(-j)=\phi(-1) \phi(j)=e h=h .
\end{array}
$$

Note that $\operatorname{Ker} \phi=\{-1,1\}$. Let's see what happens when we quotient out by $\operatorname{Ker} \phi$:

Q_{4} organized by the subgroup $K=\langle-1\rangle$

collapse cosets into single nodes

Do you notice any relationship between $Q_{4} / \operatorname{Ker}(\phi)$ and $\operatorname{Im}(\phi)$?

