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Fixed points of group actions
Recall the subtle difference between fixed points and stabilizers:

The fixed points of an action φ : G → Perm(S) are the elements of S fixed by
every g ∈ G .

The stabilizer of an element s ∈ S is the set of elements of G that fix s.

Lemma

If a group G of prime order p acts on a set S via φ : G → Perm(S), then

|Fix(φ)| ≡ |S | (mod p) .

Proof (sketch)

By the Orbit-Stabilizer theorem, all
orbits have size 1 or p.

I’ll let you fill in the details.

Fix(φ) non-fixed points all in size-p orbits

p elts

p elts

p elts

p elts

p elts
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Cauchy’s Theorem

Cauchy’s theorem

If p is a prime number dividing |G |, then G has an element g of order p.

Proof

Let P be the set of ordered p-tuples of elements from G whose product is e, i.e.,

(x1, x2, . . . , xp) ∈ P iff x1x2 · · · xp = e .

Observe that |P| = |G |p−1. (We can choose x1, . . . , xp−1 freely; then xp is forced.)

The group Zp acts on P by cyclic shift:

φ : Zp −→ Perm(P), (x1, x2, . . . , xp)
φ(1)7−→ (x2, x3 . . . , xp, x1) .

(This is because if x1x2 · · · xp = e, then x2x3 · · · xpx1 = e as well.)

The elements of P are partitioned into orbits. By the orbit-stabilizer theorem,
|Orb(s)| = [Zp : Stab(s)], which divides |Zp| = p. Thus, |Orb(s)| = 1 or p.

Observe that the only way that an orbit of (x1, x2, . . . , xp) could have size 1 is if
x1 = x2 = · · · = xp.
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Cauchy’s Theorem

Proof (cont.)

Clearly, (e, e, . . . , e) ∈ P, and the orbit containing it has size 1.

Excluding (e, . . . , e), there are |G |p−1 − 1 other elements in P, and these are
partitioned into orbits of size 1 or p.

Since p - |G |p−1 − 1, there must be some other orbit of size 1.

Thus, there is some (x , x , . . . , x) ∈ P, with x 6= e such that xp = e. �

Corollary

If p is a prime number dividing |G |, then G has a subgroup of order p.

Note that just by using the theory of group actions, and the orbit-stabilzer theorem,
we have already proven:

Cayley’s theorem: Every group G is isomorphic to a group of permutations.

The size of a conjugacy class divides the size of G .

Cauchy’s theorem: If p divides |G |, then G has an element of order p.
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Classification of groups of order 6

By Cauchy’s theorem, every group of order 6 must have an element a of order 2, and
an element b of order 3.

Clearly, G = 〈a, b〉 for two such elements. Thus, G must have a Cayley diagram that
looks like the following:

a

e

ab

b

ab2

b2

It is now easy to see that up to isomorphism, there are only 2 groups of order 6:

C6
∼= C2 × C3

a

e

ab

b

ab2

b2

D3

a

e

ab

b

ab2

b2
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