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Overview and some history

The quadradic formula is well-known. It gives us the two roots of a degree-2
polynomial ax2 + bx + c = 0:

x1,2 =
−b ±

√
b2 − 4ac

2a
.

There are formulas for cubic and quartic polynomials, but they are very complicated.
For years, people wondered if there was a quintic formula. Nobody could find one.

In the 1830s, 19-year-old political activist Évariste Galois, with no
formal mathematical training proved that no such formula existed.

He invented the concept of a group to solve this problem.

After being challenged to a dual at age 20 that he knew he would lose, Galois spent
the last few days of his life frantically writing down what he had discovered.

In a final letter Galois wrote, “Later there will be, I hope, some people who will find
it to their advantage to decipher all this mess.”

Hermann Weyl (1885–1955) described Galois’ final letter as: “if judged by the
novelty and profundity of ideas it contains, is perhaps the most substantial piece of
writing in the whole literature of mankind.” Thus was born the field of group theory!
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Arithmetic

Most people’s first exposure to mathematics comes in the form of counting.

At first, we only know about the natural numbers, N = {1, 2, 3, . . . }, and how to add
them.

Soon after, we learn how to subtract, and we learn about negative numbers as well.
At this point, we have the integers, Z = {. . . ,−2,−1, 0, 1, 2, . . . }.

Then, we learn how to divide numbers, and are introducted to fractions. This brings
us to the rational numbers, Q = { a

b
| a, b ∈ Z, b 6= 0}.

Though there are other numbers out there (irrational, complex, etc.), we don’t need
these to do basic arithmetic.

Key point

To do arithmetic, we need at least the rational numbers.
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Fields

Definition

A set F with addition and multiplication operations is a field if the following three
conditions hold:

F is an abelian group under addition.

F \ {0} is an abelian group under multiplication.

The distributive law holds: a(b + c) = ab + ac.

Examples

The following sets are fields: Q, R, C, Zp (prime p).

The following sets are not fields: N, Z, Zn (composite n).

Definition

If F and E are fields with F ⊂ E , we say that E is an extension of F .

For example, C is an extension of R, which is an extension of Q.

In this chapter, we will explore some more unusual fields and study their
automorphisms.
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An extension field of Q

Question

What is the smallest extension field F of Q that contains
√

2?

This field must contain all sums, differences, and quotients of numbers we can get
from

√
2. For example, it must include:

−
√

2, 1√
2
, 6 +

√
2,

(√
2 + 3

2

)3
,

√
2

16+
√
2
.

However, these can be simplified. For example, observe that(√
2 + 3

2

)3
= (
√

2)3 + 9
2
(
√

2)2 + 27
4

√
2 + 27

8
= 99

8
+ 35

4

√
2 .

In fact, all of these numbers can be written as a + b
√

2, for some a, b ∈ Q.

Key point

The smallest extension of Q that contains
√

2 is called “Q adjoin
√

2,” and denoted:

Q(
√

2) = {a + b
√

2 : a, b ∈ Q} =
{

p
q

+ r
s

√
2 : p, q, r , s ∈ Z, q, s 6= 0

}
.
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Q(i): Another extension field of Q

Question

What is the smallest extension field F of Q that contains i =
√
−1?

This field must contain

−i , 2
i
, 6 + i ,

(
i + 3

2

)3
, i

16+i
.

As before, we can write all of these as a + bi , where a, b ∈ Q. Thus, the field “Q
adjoin i” is

Q(i) = {a + bi : a, b ∈ Q} =

{
p

q
+

r

s
i : p, q, r , s ∈ Z, q, s 6= 0

}
.

Remarks

Q(i) is much smaller than C. For example, it does not contain
√

2.

Q(
√

2) is a subfield of R, but Q(i) is not.

Q(
√

2) contains all of the roots of f (x) = x2 − 2. It is called the splitting field
of f (x). Similarly, Q(i) is the splitting field of g(x) = x2 + 1.

M. Macauley (Clemson) Lecture 6.1: Fields and their extensions Math 4120, Modern Algebra 6 / 8

mailto:macaule@clemson.edu


Q(
√

2, i): Another extension field of Q

Question

What is the smallest extension field F of Q that contains
√

2 and i =
√
−1?

We can do this in two steps:

(i) Adjoin the roots of the polynomial x2 − 2 to Q, yielding Q(
√

2);

(ii) Adjoin the roots of the polynomial x2 + 1 to Q(
√

2), yielding Q(
√

2)(i);

An element in Q(
√

2, i) := Q(
√

2)(i) has the form

=α + βi α, β ∈ Q(
√

2)

= (a + b
√

2) + (c + d
√

2)i a, b, c, d ∈ Q
= a + b

√
2 + ci + d

√
2i a, b, c, d ∈ Q

We say that {1,
√

2, i ,
√

2i} is a basis for the extension Q(
√

2, i) over Q. Thus,

Q(
√

2, i) = {a + b
√

2 + ci + d
√

2i : a, b, c, d ∈ Q}

In summary, Q(
√

2, i) is constructed by starting with Q, and adjoining all roots of
h(x) = (x2 − 2)(x2 + 1) = x4 − x2 − 2. It is the splitting field of h(x).
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Q(
√

2,
√

3): Another extension field of Q

Question

What is the smallest extension field F of Q that contains
√

2 and
√

3?

This time, our field is Q(
√

2,
√

3), constructed by starting with Q, and adjoining all
roots of the polynomial h(x) = (x2 − 2)(x2 − 3) = x4 − 5x2 + 6.

It is not difficult to show that {1,
√

2,
√

3,
√

6} is a basis for this field, i.e.,

Q(
√

2,
√

3) = {a + b
√

2 + c
√

3 + d
√

6 : a, b, c, d ∈ Q} .

Like with did with a group and its subgroups, we
can arrange the subfields of Q(

√
2,
√

3) in a lattice.

I’ve labeled each extension with the degree of the
polynomial whose roots I need to adjoin.

Just for fun: What group has a subgroup lattice
that looks like this?

Q(
√

2,
√

3)
2

vvvvvv 2

HHHHHH
2

Q(
√

2)

2 IIIIIII
Q(
√

6)

2

Q(
√

3)

2uuuuuuu

Q
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