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Polynomials

Definition

Let x be an unknown variable. A polynomial is a function

f (x) = anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x + a0 .

The highest non-zero power of n is called the degree of f .

We can assume that all of our coefficients ai lie in a field F .

For example, if each ai ∈ Z (not a field), we could alternatively say that ai ∈ Q.

Let F [x ] denote the set of polynomials with coefficients in F . We call this the set of
polynomials over F .

Remark

Even though Z is not a field, we can still write Z[x ] to be the set of polynomials with
integer coefficients. Most polynomials we encounter have integer coeffients anyways.
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Radicals

The roots of low-degree polynomials can be expressed using arithmetic and radicals.

For example, the roots of the polynomial f (x) = 5x4 − 18x2 − 27 are

x1,2 = ±

√
6
√

6 + 9

5
, x3,4 = ±

√
9− 6

√
6

5
.

Remark

The operations of arithmetic, and radicals, are really the “only way” we have to write
down generic complex numbers.

Thus, if there is some number that cannot be expressed using radicals, we have no
way to express it, unless we invent a special symbol for it (e.g., π or e).

Even weirder, since a computer program is just a string of 0s and 1s, there are only
countably infinite many possible programs.

Since R is an uncountable set, there are numbers (in fact, “almost all” numbers)
that can never be expressed algorithmically by a computer program! Such numbers
are called “uncomputable.”
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Algebraic numbers

Definition

A complex number is algebraic (over Q) if it is the root of some polynomial in Z[x ].
The set A of all algebraic numbers forms a field (this is not immediately obvious).

A number that is not algebraic over Q (e.g., π, e, φ) is called transcendental.

Every number that can be expressed from the natural numbers using arithmetic and
radicals is algebraic. For example, consider

x = 5
√

1 +
√
−3 ⇐⇒ x5 = 1 +

√
−3

⇐⇒ x5 − 1 =
√
−3

⇐⇒ (x5 − 1)2 = −3
⇐⇒ x10 − 2x5 + 4 = 0 .

Question

Can all algebraic numbers be expressed using radicals?

This question was unsolved until the early 1800s.
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Hasse diagrams

The relationship between the natural numbers N, and the fields Q, R, A, and C, is
shown in the following Hasse diagrams.

C complex numbers a + bi , for a, b ∈ R

R real numbers

Q rational numbers, a
b for a, b ∈ Z (b 6= 0)

C

algebraic closure

A
???

||
||

||
||

solving polynomial equations???

using radicals AA
AA

AA
AA

Q

operations of arithmetic

N
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Some basic facts about the complex numbers

Definition

A field F is algebraically closed if for any polynomial f (x) ∈ F [x ], all of the roots of
f (x) lie in F .

Non-examples

Q is not algebraically closed because f (x) = x2 − 2 ∈ Q[x ] has a root
√

2 6∈ Q.

R is not algebraically closed because f (x) = x2 + 1 ∈ R[x ] has a root
√
−1 6∈ R.

Fundamental theorem of algebra

The field C is algebraically closed.

Thus, every polynomial f (x) ∈ Z[x ] completely factors, or splits over C:

f (x) = (x − r1)(x − r2) · · · (x − rn) , ri ∈ C .

Conversely, if F is not algebraically closed, then there are polynomials f (x) ∈ F [x ]
that do not split into linear factors over F .
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Complex conjugates

Recall that complex roots of f (x) ∈ C[x ] come
in conjugate pairs: If r = a + bi is a root, then
so is r := a− bi .

For example, here are the roots of some polyno-
mials (degrees 2 through 5) plotted in the com-
plex plane. All of them exhibit symmetry across
the x-axis.

•
1 + i

•
1 − i

f (x) = x2 − 2x + 2

Roots: 1 ± i
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y
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i
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i

•
− 1

3

f (x) = 12x3 − 44x2 + 35x + 17

Roots: − 1
3
, 2± 1

2
i
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2
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√
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√
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√
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√
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√
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f (x) = x4 + 1

Roots: ±
√

2
2
±
√

2
2

x

y

•
−2

•

1
2

+ i

•
1
2
− i

•

3
2

•
3

f (x) = 8x5−28x4−6x3+83x2−117x+90

Roots: −2, 3
2
, 3, 1

2
i± i

x

y
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Irreducibility

Definition

A polynomial f (x) ∈ F [x ] is reducible over F if we can factor it as f (x) = g(x)h(x)
for some g(x), h(x) ∈ F [x ] of strictly lower degree. If f (x) is not reducible, we say it
is irreducible over F .

Examples

x2 − x − 6 = (x + 2)(x − 3) is reducible over Q.

x4 + 5x2 + 4 = (x2 + 1)(x2 + 4) is reducible over Q, but it has no roots in Q.

x3 − 2 is irreducible over Q. If we could factor it, then one of the factors would
have degree 1. But x3 − 2 has no roots in Q.

Facts

If deg(f ) > 1 and has a root in F , then it is reducible over F .

Every polynomial in Z[x ] is reducible over C.

If f (x) ∈ F [x ] is a degree-2 or 3 polynomial, then f (x) is reducible over F if and
only if f (x) has a root in F .
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Eisenstein’s criterion for irreducibility

Lemma

Let f ∈ Z[x ] be irreducible. Then f is also irreducible over Q.

Equivalently, if f ∈ Z[x ] factors over Q, then it factors over Z.

Theorem (Eisenstein’s criterion)

A polynomial f (x) = anx
n + an−1x

n−1 + · · · a1x + a0 ∈ Z[x ] is irreducible if for some
prime p, the following all hold:

1. p - an;

2. p | ak for k = 0, . . . , n − 1;

3. p2 - a0.

For example, Eisenstein’s criterion tells us that x10 + 4x7 + 18x + 14 is irreducible.

Remark

If Eisenstein’s criterion fails for all primes p, that does not necessarily imply that f is
reducible. For example, f (x) = x2 + x + 1 is irreducible over Q, but Eisenstein
cannot detect this.
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Extension fields as vector spaces
Recall that a vector space over Q is a set of vectors V such that

If u, v ∈ V , then u + v ∈ V (closed under addition)

If v ∈ V , then cv ∈ V for all c ∈ Q (closed under scalar multiplication).

The field Q(
√

2) is a 2-dimensional vector space over Q:

Q(
√

2) = {a + b
√

2 : a, b ∈ Q}.

This is why we say that {1,
√

2} is a basis for Q(
√

2) over Q.

Notice that the other field extensions we’ve seen are also vector spaces over Q:

Q(
√

2, i) = {a + b
√

2 + ci + d
√

2i : a, b, c, d ∈ Q},
Q(ζ, 3

√
2) = {a + b 3

√
2 + c 3

√
4 + dζ + eζ 3

√
2 + f ζ 3

√
4 : a, b, c, d , e, f ∈ Q} .

As Q-vector spaces, Q(
√

2, i) has dimension 4, and Q(ζ, 3
√

2) has dimension 6.

Definition

If F ⊆ E are fields, then the degree of the extension, denoted [E : F ], is the
dimension of E as a vector space over F .

Equivalently, this is the number of terms in the expression for a general element for E
using coefficients from F .
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Minimial polynomials

Definition

Let r 6∈ F be algebraic. The minimal polynomial of r over F is the irreducible
polynomial in F [x ] of which r is a root. It is unique up to scalar multiplication.

Examples
√

2 has minimal polynomial x2 − 2 over Q, and [Q(
√

2) : Q] = 2.

i =
√
−1 has minimal polynomial x2 + 1 over Q, and [Q(i) : Q] = 2.

ζ = e2πi/3 has minimal polynomial x2 + x + 1 over Q, and [Q(ζ) : Q] = 2.
3
√

2 has minimal polynomial x3 − 2 over Q, and [Q( 3
√

2) : Q] = 3.

What are the minimal polynomials of the following numbers over Q?

−
√

2 , −i , ζ2 , ζ
3
√

2 , ζ2
3
√

2 .

Degree theorem

The degree of the extension Q(r) is the degree of the minimal polynomial of r .

M. Macauley (Clemson) Lecture 6.3: Polynomials and irreducibility Math 4120, Modern Algebra 11 / 11

mailto:macaule@clemson.edu

