Lecture 6.4: Galois groups

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4120, Modern Algebra

The Galois group of a polynomial

Definition

Let $f \in \mathbb{Z}[x]$ be a polynomial, with roots r_{1}, \ldots, r_{n}. The splitting field of f is the field

$$
\mathbb{Q}\left(r_{1}, \ldots, r_{n}\right) .
$$

The splitting field F of $f(x)$ has several equivalent characterizations:

- the smallest field that contains all of the roots of $f(x)$;
- the smallest field in which $f(x)$ splits into linear factors:

$$
f(x)=\left(x-r_{1}\right)\left(x-r_{2}\right) \cdots\left(x-r_{n}\right) \in F[x] .
$$

Recall that the Galois group of an extension $F \supseteq \mathbb{Q}$ is the group of automorphisms of F, denoted $\operatorname{Gal}(F)$.

Definition

The Galois group of a polynomial $f(x)$ is the Galois group of its splitting field, denoted $\operatorname{Gal}(f(x))$.

A few examples of Galois groups

- The polynomial $x^{2}-2$ splits in $\mathbb{Q}(\sqrt{2})$, so

$$
\operatorname{Gal}\left(x^{2}-2\right)=\operatorname{Gal}(\mathbb{Q}(\sqrt{2})) \cong C_{2} .
$$

- The polynomial $x^{2}+1$ splits in $\mathbb{Q}(i)$, so

$$
\operatorname{Gal}\left(x^{2}+1\right)=\operatorname{Gal}(\mathbb{Q}(i)) \cong C_{2} .
$$

- The polynomial $x^{2}+x+1$ splits in $\mathbb{Q}(\zeta)$, where $\zeta=e^{2 \pi i / 3}$, so

$$
\operatorname{Gal}\left(x^{2}+x+1\right)=\operatorname{Gal}(\mathbb{Q}(\zeta)) \cong C_{2} .
$$

- The polynomial $x^{3}-1=(x-1)\left(x^{2}+x+1\right)$ also splits in $\mathbb{Q}(\zeta)$, so

$$
\operatorname{Gal}\left(x^{3}-1\right)=\operatorname{Gal}(\mathbb{Q}(\zeta)) \cong C_{2} .
$$

- The polynomial $x^{4}-x^{2}-2=\left(x^{2}-2\right)\left(x^{2}+1\right)$ splits in $\mathbb{Q}(\sqrt{2}, i)$, so

$$
\operatorname{Gal}\left(x^{4}-x^{2}-2\right)=\operatorname{Gal}(\mathbb{Q}(\sqrt{2}, i)) \cong V_{4} .
$$

- The polynomial $x^{4}-5 x^{2}+6=\left(x^{2}-2\right)\left(x^{2}-3\right)$ splits in $\mathbb{Q}(\sqrt{2}, \sqrt{3})$, so

$$
\operatorname{Gal}\left(x^{4}-5 x^{2}+6\right)=\operatorname{Gal}(\mathbb{Q}(\sqrt{2}, \sqrt{3})) \cong V_{4} .
$$

- The polynomial $x^{3}-2$ splits in $\mathbb{Q}(\zeta, \sqrt[3]{2})$, so

$$
\operatorname{Gal}\left(x^{3}-2\right)=\operatorname{Gal}(\mathbb{Q}(\zeta, \sqrt[3]{2})) \cong D_{3} ? ? ?
$$

The tower law of field extensions
Recall that if we had a chain of subgroups $K \leq H \leq G$, then the index satisfies a tower law: $[G: K]=[G: H][H: K]$.

Not surprisingly, the degree of field extensions obeys a similar tower law:

Theorem (Tower law)

For any chain of field extensions, $F \subset E \subset K$,

$$
[K: F]=[K: E][E: F]
$$

We have already observed this in our subfield lattices:

$$
[\mathbb{Q}(\sqrt{2}, \sqrt{3}): \mathbb{Q}]=[\underbrace{\mathbb{Q}(\sqrt{2}, \sqrt{3}): \mathbb{Q}(\sqrt{2})}_{\text {min. poly: } x^{2}-3}][\underbrace{\mathbb{Q}(\sqrt{2}): \mathbb{Q}}_{\text {min. poly: } x^{2}-2}]=2 \cdot 2=4 .
$$

Here is another example:

$$
[\mathbb{Q}(\zeta, \sqrt[3]{2}): \mathbb{Q}]=[\underbrace{\mathbb{Q}(\zeta, \sqrt[3]{2}): \mathbb{Q}(\sqrt[3]{2})}_{\text {min. poly: } x^{2}+x+1}][\underbrace{\mathbb{Q}(\sqrt[3]{2}): \mathbb{Q}}_{\text {min. poly: } x^{3}-2}]=2 \cdot 3=6 .
$$

Primitive elements

Primitive element theorem

If F is an extension of \mathbb{Q} with $[F: \mathbb{Q}]<\infty$, then F has a primitive element: some $\alpha \notin \mathbb{Q}$ for which $F=\mathbb{Q}(\alpha)$.

How do we find a primitive element α of $F=\mathbb{Q}(\zeta, \sqrt[3]{2})=\mathbb{Q}(i \sqrt{3}, \sqrt[3]{2})$?
Let's try $\alpha=i \sqrt{3} \sqrt[3]{2} \in F$. Clearly, $[\mathbb{Q}(\alpha): \mathbb{Q}] \leq 6$. Observe that

$$
\alpha^{2}=-3 \sqrt[3]{4}, \quad \alpha^{3}=-6 i \sqrt{3}, \quad \alpha^{4}=-18 \sqrt[3]{2}, \quad \alpha^{5}=18 i \sqrt[3]{4} \sqrt{3}, \quad \alpha^{6}=-108
$$

Thus, α is a root of $x^{6}+108$. The following are equivalent (why?):
(i) α is a primitive element of F;
(ii) $[\mathbb{Q}(\alpha): \mathbb{Q}]=6$;
(iii) the minimal polynomial $m(x)$ of α has degree 6 ;
(iv) $x^{6}+108$ is irreducible (and hence must be $m(x)$).

In fact, $[\mathbb{Q}(\alpha): \mathbb{Q}]=6$ holds because both 2 and 3 divide $[\mathbb{Q}(\alpha): \mathbb{Q}]$:
$[\mathbb{Q}(\alpha): \mathbb{Q}]=[\mathbb{Q}(\alpha): \mathbb{Q}(i \sqrt{3})] \underbrace{[\mathbb{Q}(i \sqrt{3}): \mathbb{Q}]}_{=2}, \quad[\mathbb{Q}(\alpha): \mathbb{Q}]=[\mathbb{Q}(\alpha): \mathbb{Q}(\sqrt[3]{2})] \underbrace{[\mathbb{Q}(\sqrt[3]{2}): \mathbb{Q}]}_{=3}$.

An example: The Galois group of $x^{4}-5 x^{2}+6$

The polynomial $f(x)=\left(x^{2}-2\right)\left(x^{2}-3\right)=x^{4}-5 x^{2}+6$ has splitting field $\mathbb{Q}(\sqrt{2}, \sqrt{3})$.
We already know that its Galois group should be V_{4}. Let's compute it explicitly; this will help us understand it better.

We need to determine all automorphisms ϕ of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$. We know:

- ϕ is determined by where it sends the basis elements $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$.
- ϕ must fix 1 .
- If we know where ϕ sends two of $\{\sqrt{2}, \sqrt{3}, \sqrt{6}\}$, then we know where it sends the third, because

$$
\phi(\sqrt{6})=\phi(\sqrt{2} \sqrt{3})=\phi(\sqrt{2}) \phi(\sqrt{3}) .
$$

In addition to the identity automorphism e, we have

$$
\left\{\begin{array} { l }
{ \phi _ { 2 } (\sqrt { 2 }) = - \sqrt { 2 } } \\
{ \phi _ { 2 } (\sqrt { 3 }) = \sqrt { 3 } }
\end{array} \quad \left\{\begin{array} { l }
{ \phi _ { 3 } (\sqrt { 2 }) = \sqrt { 2 } } \\
{ \phi _ { 3 } (\sqrt { 3 }) = - \sqrt { 3 } }
\end{array} \quad \left\{\begin{array}{l}
\phi_{4}(\sqrt{2})=-\sqrt{2} \\
\phi_{4}(\sqrt{3})=-\sqrt{3}
\end{array}\right.\right.\right.
$$

Question

What goes wrong if we try to make $\phi(\sqrt{2})=\sqrt{3}$?

An example: The Galois group of $x^{4}-5 x^{2}+6$
There are 4 automorphisms of $F=\mathbb{Q}(\sqrt{2}, \sqrt{3})$, the splitting field of $x^{4}-5 x^{2}+6$:

$$
\begin{aligned}
e: a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6} & \longmapsto \\
\phi_{2}: a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6} & \longmapsto \\
\phi_{3}: a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6} & \longmapsto a-b \sqrt{2}+c \sqrt{3}-d \sqrt{6} \\
\phi_{4}: a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6} & \longmapsto a+b \sqrt{2}-c \sqrt{3}-d \sqrt{6} \\
& a-b \sqrt{2}-c \sqrt{3}+d \sqrt{6}
\end{aligned}
$$

They form the Galois group of $x^{4}-5 x^{2}+6$. The multiplication table and Cayley diagram are shown below.

	e	ϕ_{2}	ϕ_{3}	ϕ_{4}
e	e	ϕ_{2}	ϕ_{3}	ϕ_{4}
ϕ_{2}	ϕ_{2}	e	ϕ_{4}	ϕ_{3}
ϕ_{3}	ϕ_{3}	ϕ_{4}	e	ϕ_{2}
ϕ_{4}	ϕ_{4}	ϕ_{3}	ϕ_{2}	e

Exercise

Show that $\alpha=\sqrt{2}+\sqrt{3}$ is a primitive element of F, i.e., $\mathbb{Q}(\alpha)=\mathbb{Q}(\sqrt{2}, \sqrt{3})$.

