Lecture 6.4: Galois groups

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 4120, Modern Algebra

The Galois group of a polynomial

Definition

Let $f \in \mathbb{Z}[x]$ be a polynomial, with roots r_1, \ldots, r_n . The splitting field of f is the field

 $\mathbb{Q}(r_1,\ldots,r_n)$.

The splitting field F of f(x) has several equivalent characterizations:

- the smallest field that contains all of the roots of f(x);
- the smallest field in which f(x) splits into linear factors:

$$f(x)=(x-r_1)(x-r_2)\cdots(x-r_n)\in F[x].$$

Recall that the Galois group of an extension $F \supseteq \mathbb{Q}$ is the group of automorphisms of F, denoted Gal(F).

Definition

The Galois group of a polynomial f(x) is the Galois group of its splitting field, denoted Gal(f(x)).

A few examples of Galois groups

The polynomial
$$x^2 - 2$$
 splits in $\mathbb{Q}(\sqrt{2})$, so

$$\mathsf{Gal}(x^2-2)=\mathsf{Gal}(\mathbb{Q}(\sqrt{2}))\cong \mathit{C}_2$$
 .

• The polynomial $x^2 + 1$ splits in $\mathbb{Q}(i)$, so

$${\sf Gal}(x^2+1)={\sf Gal}({\mathbb Q}(i))\cong C_2$$
 .

• The polynomial $x^2 + x + 1$ splits in $\mathbb{Q}(\zeta)$, where $\zeta = e^{2\pi i/3}$, so $\operatorname{Gal}(x^2 + x + 1) = \operatorname{Gal}(\mathbb{Q}(\zeta)) \cong C_2$.

• The polynomial
$$x^3 - 1 = (x - 1)(x^2 + x + 1)$$
 also splits in $\mathbb{Q}(\zeta)$, so
 $\mathsf{Gal}(x^3 - 1) = \mathsf{Gal}(\mathbb{Q}(\zeta)) \cong C_2$.

• The polynomial
$$x^4 - x^2 - 2 = (x^2 - 2)(x^2 + 1)$$
 splits in $\mathbb{Q}(\sqrt{2}, i)$, so
 $\operatorname{Gal}(x^4 - x^2 - 2) = \operatorname{Gal}(\mathbb{Q}(\sqrt{2}, i)) \cong V_4$.

• The polynomial
$$x^4 - 5x^2 + 6 = (x^2 - 2)(x^2 - 3)$$
 splits in $\mathbb{Q}(\sqrt{2}, \sqrt{3})$, so
 $\operatorname{Gal}(x^4 - 5x^2 + 6) = \operatorname{Gal}(\mathbb{Q}(\sqrt{2}, \sqrt{3})) \cong V_4$.

The polynomial $x^3 - 2$ splits in $\mathbb{Q}(\zeta, \sqrt[3]{2})$, so $Gal(x^3 - 2) = Gal(\mathbb{Q}(\zeta, \sqrt[3]{2})) \cong D_3$???

The tower law of field extensions

Recall that if we had a chain of subgroups $K \le H \le G$, then the index satisfies a tower law: [G : K] = [G : H][H : K].

Not surprisingly, the degree of field extensions obeys a similar tower law:

Theorem (Tower law)

For any chain of field extensions, $F \subset E \subset K$,

[K:F] = [K:E][E:F].

We have already observed this in our subfield lattices:

$$[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}] = [\underbrace{\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}(\sqrt{2})}_{\text{min. poly: } x^2-3}][\underbrace{\mathbb{Q}(\sqrt{2}):\mathbb{Q}}_{\text{min. poly: } x^2-2}] = 2 \cdot 2 = 4$$

Here is another example:

$$[\mathbb{Q}(\zeta, \sqrt[3]{2}) : \mathbb{Q}] = [\underbrace{\mathbb{Q}(\zeta, \sqrt[3]{2}) : \mathbb{Q}(\sqrt[3]{2})}_{\text{min. poly: } x^2 + x + 1}][\underbrace{\mathbb{Q}(\sqrt[3]{2}) : \mathbb{Q}}_{\text{min. poly: } x^3 - 2}] = 2 \cdot 3 = 6.$$

Primitive elements

Primitive element theorem

If F is an extension of \mathbb{Q} with $[F : \mathbb{Q}] < \infty$, then F has a primitive element: some $\alpha \notin \mathbb{Q}$ for which $F = \mathbb{Q}(\alpha)$.

How do we find a primitive element α of $F = \mathbb{Q}(\zeta, \sqrt[3]{2}) = \mathbb{Q}(i\sqrt{3}, \sqrt[3]{2})$?

Let's try $\alpha = i\sqrt{3\sqrt[3]{2}} \in F$. Clearly, $[\mathbb{Q}(\alpha) : \mathbb{Q}] \leq 6$. Observe that

$$\alpha^{2} = -3\sqrt[3]{4}, \quad \alpha^{3} = -6i\sqrt{3}, \quad \alpha^{4} = -18\sqrt[3]{2}, \quad \alpha^{5} = 18i\sqrt[3]{4}\sqrt{3}, \quad \alpha^{6} = -108.$$

Thus, α is a root of $x^6 + 108$. The following are equivalent (why?):

- (i) α is a primitive element of *F*;
- (ii) $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 6;$
- (iii) the minimal polynomial m(x) of α has degree 6;
- (iv) $x^6 + 108$ is irreducible (and hence must be m(x)).

In fact, $[\mathbb{Q}(\alpha):\mathbb{Q}] = 6$ holds because both 2 and 3 divide $[\mathbb{Q}(\alpha):\mathbb{Q}]:$

$$[\mathbb{Q}(\alpha):\mathbb{Q}] = [\mathbb{Q}(\alpha):\mathbb{Q}(i\sqrt{3})]\underbrace{[\mathbb{Q}(i\sqrt{3}):\mathbb{Q}]}_{=2}, \qquad [\mathbb{Q}(\alpha):\mathbb{Q}] = [\mathbb{Q}(\alpha):\mathbb{Q}(\sqrt[3]{2})]\underbrace{[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}]}_{=3}.$$

An example: The Galois group of $x^4 - 5x^2 + 6$

The polynomial $f(x) = (x^2 - 2)(x^2 - 3) = x^4 - 5x^2 + 6$ has splitting field $\mathbb{Q}(\sqrt{2}, \sqrt{3})$.

We already know that its Galois group should be V_4 . Let's compute it explicitly; this will help us understand it better.

We need to determine all automorphisms ϕ of $\mathbb{Q}(\sqrt{2},\sqrt{3})$. We know:

- ϕ is determined by where it sends the basis elements $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$.
- ϕ must fix 1.
- If we know where ϕ sends two of $\{\sqrt{2}, \sqrt{3}, \sqrt{6}\}$, then we know where it sends the third, because

$$\phi(\sqrt{6}) = \phi(\sqrt{2}\sqrt{3}) = \phi(\sqrt{2})\phi(\sqrt{3}).$$

In addition to the identity automorphism e, we have

$$\begin{cases} \phi_2(\sqrt{2}) = -\sqrt{2} \\ \phi_2(\sqrt{3}) = \sqrt{3} \end{cases} \begin{cases} \phi_3(\sqrt{2}) = \sqrt{2} \\ \phi_3(\sqrt{3}) = -\sqrt{3} \end{cases} \begin{cases} \phi_4(\sqrt{2}) = -\sqrt{2} \\ \phi_4(\sqrt{3}) = -\sqrt{3} \end{cases}$$

Question

What goes wrong if we try to make $\phi(\sqrt{2}) = \sqrt{3}$?

An example: The Galois group of $x^4 - 5x^2 + 6$

There are 4 automorphisms of $F = \mathbb{Q}(\sqrt{2}, \sqrt{3})$, the splitting field of $x^4 - 5x^2 + 6$:

$$\begin{array}{rcl} e: a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} & \longmapsto & a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} \\ \phi_2: a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} & \longmapsto & a - b\sqrt{2} + c\sqrt{3} - d\sqrt{6} \\ \phi_3: a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} & \longmapsto & a + b\sqrt{2} - c\sqrt{3} - d\sqrt{6} \\ \phi_4: a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} & \longmapsto & a - b\sqrt{2} - c\sqrt{3} + d\sqrt{6} \end{array}$$

They form the Galois group of $x^4 - 5x^2 + 6$. The multiplication table and Cayley diagram are shown below.

