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The Galois group of a polynomial

Definition

Let f ∈ Z[x ] be a polynomial, with roots r1, . . . , rn. The splitting field of f is the field

Q(r1, . . . , rn) .

The splitting field F of f (x) has several equivalent characterizations:

the smallest field that contains all of the roots of f (x);

the smallest field in which f (x) splits into linear factors:

f (x) = (x − r1)(x − r2) · · · (x − rn) ∈ F [x ] .

Recall that the Galois group of an extension F ⊇ Q is the group of automorphisms of
F , denoted Gal(F ).

Definition

The Galois group of a polynomial f (x) is the Galois group of its splitting field,
denoted Gal(f (x)).
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A few examples of Galois groups

The polynomial x2 − 2 splits in Q(
√

2), so

Gal(x2 − 2) = Gal(Q(
√

2)) ∼= C2 .

The polynomial x2 + 1 splits in Q(i), so

Gal(x2 + 1) = Gal(Q(i)) ∼= C2 .

The polynomial x2 + x + 1 splits in Q(ζ), where ζ = e2πi/3, so

Gal(x2 + x + 1) = Gal(Q(ζ)) ∼= C2 .

The polynomial x3 − 1 = (x − 1)(x2 + x + 1) also splits in Q(ζ), so

Gal(x3 − 1) = Gal(Q(ζ)) ∼= C2 .

The polynomial x4 − x2 − 2 = (x2 − 2)(x2 + 1) splits in Q(
√

2, i), so

Gal(x4 − x2 − 2) = Gal(Q(
√

2, i)) ∼= V4 .

The polynomial x4 − 5x2 + 6 = (x2 − 2)(x2 − 3) splits in Q(
√

2,
√

3), so

Gal(x4 − 5x2 + 6) = Gal(Q(
√

2,
√

3)) ∼= V4 .

The polynomial x3 − 2 splits in Q(ζ, 3
√

2), so

Gal(x3 − 2) = Gal(Q(ζ,
3
√

2)) ∼= D3 ???
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The tower law of field extensions

Recall that if we had a chain of subgroups K ≤ H ≤ G , then the index satisfies a
tower law: [G : K ] = [G : H][H : K ].

Not surprisingly, the degree of field extensions obeys a similar tower law:

Theorem (Tower law)

For any chain of field extensions, F ⊂ E ⊂ K ,

[K : F ] = [K : E ][E : F ] .

We have already observed this in our subfield lattices:

[Q(
√

2,
√

3) : Q] = [Q(
√

2,
√

3) : Q(
√

2)︸ ︷︷ ︸
min. poly: x2−3

][ Q(
√

2) : Q︸ ︷︷ ︸
min. poly: x2−2

] = 2 · 2 = 4 .

Here is another example:

[Q(ζ,
3
√

2) : Q] = [Q(ζ,
3
√

2) : Q(
3
√

2)︸ ︷︷ ︸
min. poly: x2+x+1

][ Q(
3
√

2) : Q︸ ︷︷ ︸
min. poly: x3−2

] = 2 · 3 = 6 .
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Primitive elements
Primitive element theorem

If F is an extension of Q with [F : Q] <∞, then F has a primitive element: some
α 6∈ Q for which F = Q(α).

How do we find a primitive element α of F = Q(ζ, 3
√

2) = Q(i
√

3, 3
√

2)?

Let’s try α = i
√

3 3
√

2 ∈ F . Clearly, [Q(α) : Q] ≤ 6. Observe that

α2 = −3 3
√
4, α3 = −6i

√
3, α4 = −18 3

√
2, α5 = 18i 3

√
4
√

3, α6 = −108.

Thus, α is a root of x6 + 108. The following are equivalent (why?):

(i) α is a primitive element of F ;

(ii) [Q(α) : Q] = 6;

(iii) the minimal polynomial m(x) of α has degree 6;

(iv) x6 + 108 is irreducible (and hence must be m(x)).

In fact, [Q(α) :Q] = 6 holds because both 2 and 3 divide [Q(α) :Q]:

[Q(α) :Q] = [Q(α) :Q(i
√

3)] [Q(i
√
3) :Q]︸ ︷︷ ︸

=2

, [Q(α) :Q] = [Q(α) :Q(
3
√

2)] [Q(
3
√

2) :Q]︸ ︷︷ ︸
=3

.

M. Macauley (Clemson) Lecture 6.4: Galois groups Math 4120, Modern Algebra 5 / 7

mailto:macaule@clemson.edu


An example: The Galois group of x4 − 5x2 + 6

The polynomial f (x) = (x2− 2)(x2− 3) = x4− 5x2 + 6 has splitting field Q(
√

2,
√

3).

We already know that its Galois group should be V4. Let’s compute it explicitly; this
will help us understand it better.

We need to determine all automorphisms φ of Q(
√

2,
√

3). We know:

φ is determined by where it sends the basis elements {1,
√

2,
√

3,
√

6}.
φ must fix 1.

If we know where φ sends two of {
√

2,
√

3,
√

6}, then we know where it sends
the third, because

φ(
√

6) = φ(
√

2
√

3) = φ(
√

2)φ(
√

3) .

In addition to the identity automorphism e, we have{
φ2(
√

2) = −
√

2

φ2(
√

3) =
√

3

{
φ3(
√

2) =
√

2

φ3(
√

3) = −
√

3

{
φ4(
√

2) = −
√

2

φ4(
√

3) = −
√

3

Question

What goes wrong if we try to make φ(
√

2) =
√

3?
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An example: The Galois group of x4 − 5x2 + 6

There are 4 automorphisms of F = Q(
√

2,
√

3), the splitting field of x4 − 5x2 + 6:

e : a + b
√

2 + c
√

3 + d
√

6 7−→ a + b
√

2 + c
√

3 + d
√

6

φ2 : a + b
√

2 + c
√

3 + d
√

6 7−→ a− b
√

2 + c
√

3− d
√

6

φ3 : a + b
√

2 + c
√

3 + d
√

6 7−→ a + b
√

2− c
√

3− d
√

6

φ4 : a + b
√

2 + c
√

3 + d
√

6 7−→ a− b
√

2− c
√

3 + d
√

6

They form the Galois group of x4 − 5x2 + 6. The multiplication table and Cayley
diagram are shown below.

e

φ2

φ3

φ4

e φ2 φ3 φ4

e

φ2

φ3

φ4

φ2

e

φ4

φ3

φ3

φ4

e

φ2

φ4

φ3

φ2

e

e

φ3

φ2

φ4

•• ••
x

y

−
√

2−
√

3
√

2
√

3

φ2

φ3

Exercise

Show that α =
√

2 +
√

3 is a primitive element of F , i.e., Q(α) = Q(
√

2,
√

3).
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