# Lecture 6.5: Galois group actions and normal field extensions 

Matthew Macauley<br>Department of Mathematical Sciences<br>Clemson University<br>http://www.math.clemson.edu/~macaule/

Math 4120, Modern Algebra

The Galois group of $x^{4}-5 x^{2}+6$ acting on its roots
Recall the 4 automorphisms of $F=\mathbb{Q}(\sqrt{2}, \sqrt{3})$, the splitting field of $x^{4}-5 x^{2}+6$ :

$$
\begin{aligned}
e: a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6} & \longmapsto \\
\phi_{2}: a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6} & \longmapsto \\
\phi_{3}: a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6} & \longmapsto a-b \sqrt{3}+c \sqrt{3}-d \sqrt{6} \\
\phi_{4}: a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6} & \longmapsto a+b \sqrt{2}-c \sqrt{3}-d \sqrt{6} \\
& a-b \sqrt{2}-c \sqrt{3}+d \sqrt{6}
\end{aligned}
$$

They form the Galois group of $x^{4}-5 x^{2}+6$. The multiplication table and Cayley diagram are shown below.

|  | $e$ | $\phi_{2}$ | $\phi_{3}$ | $\phi_{4}$ |
| :---: | :---: | :---: | :---: | :---: |
| $e$ | $e$ | $\phi_{2}$ | $\phi_{3}$ | $\phi_{4}$ |
| $\phi_{2}$ | $\phi_{2}$ | $e$ | $\phi_{4}$ | $\phi_{3}$ |
| $\phi_{3}$ | $\phi_{3}$ | $\phi_{4}$ | $e$ | $\phi_{2}$ |
| $\phi_{4}$ | $\phi_{4}$ | $\phi_{3}$ | $\phi_{2}$ | $e$ |




## Key point

There is a group action of $\operatorname{Gal}(f(x))$ on the set of roots $S=\{ \pm \sqrt{2}, \pm \sqrt{3}\}$ of $f(x)$.

## The Galois group acts on the roots

## Theorem

If $f \in \mathbb{Z}[x]$ is a polynomial with a root in a field extension $F$ of $\mathbb{Q}$, then any automorphism of $F$ permutes the roots of $f$.

Said differently, we have a group action of $\operatorname{Gal}(f(x))$ on the set $S=\left\{r_{1}, \ldots, r_{n}\right\}$ of roots of $f(x)$.

That is, we have a homomorphism

$$
\psi: \operatorname{Gal}(f(x)) \longrightarrow \operatorname{Perm}\left(\left\{r_{1}, \ldots, r_{n}\right\}\right)
$$

If $\phi \in \operatorname{Gal}(f(x))$, then $\psi(\phi)$ is a permutation of the roots of $f(x)$.
This permutation is what results by "pressing the $\phi$-button" - it permutes the roots of $f(x)$ via the automorphism $\phi$ of the splitting field of $f(x)$.

## Corollary

If the degree of $f \in \mathbb{Z}[x]$ is $n$, then the Galois group of $f$ is a subgroup of $S_{n}$.

The Galois group acts on the roots

The next results says that " $\mathbb{Q}$ can't tell apart the roots of an irreducible polynomial."

## The "One orbit theorem"

Let $r_{1}$ and $r_{2}$ be roots of an irreducible polynomial over $\mathbb{Q}$. Then
(a) There is an isomorphism $\phi: \mathbb{Q}\left(r_{1}\right) \longrightarrow \mathbb{Q}\left(r_{2}\right)$ that fixes $\mathbb{Q}$ and with $\phi\left(r_{1}\right)=r_{2}$.
(b) This remains true when $\mathbb{Q}$ is replaced with any extension field $F$, where $\mathbb{Q} \subset F \subset \mathbb{C}$.

## Corollary

If $f(x)$ is irreducible over $\mathbb{Q}$, then for any two roots $r_{1}$ and $r_{2}$ of $f(x)$, the Galois group $\operatorname{Gal}(f(x))$ contains an automorphism $\phi: r_{1} \longmapsto r_{2}$.

In other words, if $f(x)$ is irreducible, then the action of $\operatorname{Gal}(f(x))$ on the set $S=\left\{r_{1}, \ldots, r_{n}\right\}$ of roots has only one orbit.

## Normal field extensions

## Definition

An extension field $E$ of $F$ is normal if it is the splitting field of some polynomial $f(x)$.

If $E$ is a normal extension over $F$, then every irreducible polynomial in $F[x]$ that has a root in $E$ splits over $F$.

Thus, if you can find an irreducible polynomial that has one root, but not all of its roots in $E$, then $E$ is not a normal extension.

## Normal extension theorem

The degree of a normal extension is the order of its Galois group.

## Corollary

The order of the Galois group of a polynomial $f(x)$ is the degree of the extension of its splitting field over $\mathbb{Q}$.

Normal field extensions: Examples
Consider $\mathbb{Q}(\zeta, \sqrt[3]{2})=\mathbb{Q}(\alpha)$, the splitting field of $f(x)=x^{3}-2$.

It is also the splitting field of $m(x)=x^{6}+108$, the minimal polynomial of $\alpha=\sqrt[3]{2} \sqrt{-3}$.

Let's see which of its intermediate subfields are normal extensions of $\mathbb{Q}$.


■ $\mathbb{Q}$ : Trivially normal.

- $\mathbb{Q}(\zeta)$ : Splitting field of $x^{2}+x+1$; roots are $\zeta, \zeta^{2} \in \mathbb{Q}(\zeta)$. Normal.
- $\mathbb{Q}(\sqrt[3]{2})$ : Contains only one root of $x^{3}-2$, not the other two. Not normal.
- $\mathbb{Q}(\zeta \sqrt[3]{2})$ : Contains only one root of $x^{3}-2$, not the other two. Not normal.
- $\mathbb{Q}\left(\zeta^{2} \sqrt[3]{2}\right)$ : Contains only one root of $x^{3}-2$, not the other two. Not normal.
- $\mathbb{Q}(\zeta, \sqrt[3]{2})$ : Splitting field of $x^{3}-2$. Normal.

By the normal extension theorem,

$$
|\operatorname{Gal}(\mathbb{Q}(\zeta))|=[\mathbb{Q}(\zeta): \mathbb{Q}]=2, \quad|\operatorname{Gal}(\mathbb{Q}(\zeta, \sqrt[3]{2}))|=[\mathbb{Q}(\zeta, \sqrt[3]{2}): \mathbb{Q}]=6
$$

Moreover, you can check that $|\operatorname{Gal}(\mathbb{Q}(\sqrt[3]{2}))|=1<[\mathbb{Q}(\sqrt[3]{2}): \mathbb{Q}]=3$.

## The Galois group of $x^{3}-2$

We can now conclusively determine the Galois group of $x^{3}-2$.
By definition, the Galois group of a polynomial is the Galois group of its splitting field, so $\operatorname{Gal}\left(x^{3}-2\right)=\operatorname{Gal}(\mathbb{Q}(\zeta, \sqrt[3]{2}))$.

By the normal extension theorem, the order of the Galois group of $f(x)$ is the degree of the extension of its splitting field:

$$
|\operatorname{Gal}(\mathbb{Q}(\zeta, \sqrt[3]{2}))|=[\mathbb{Q}(\zeta, \sqrt[3]{2}): \mathbb{Q}]=6
$$

Since the Galois group acts on the roots of $x^{3}-2$, it must be a subgroup of $S_{3} \cong D_{3}$.
There is only one subgroup of $S_{3}$ of order 6 , so $\operatorname{Gal}\left(x^{3}-2\right) \cong S_{3}$. Here is the action diagram of $\operatorname{Gal}\left(x^{3}-2\right)$ acting on the set $S=\left\{r_{1}, r_{2}, r_{3}\right\}$ of roots of $x^{3}-2$ :

$$
\begin{aligned}
& \left\{\begin{array}{l}
r: \sqrt[3]{2} \longmapsto \zeta \sqrt[3]{2} \\
r: \zeta \longmapsto \zeta
\end{array}\right. \\
& \left\{\begin{array}{l}
f: \sqrt[3]{2} \longmapsto \sqrt[3]{2} \\
f: \zeta \longmapsto \zeta^{2}
\end{array}\right.
\end{aligned}
$$



