Lecture 6.5: Galois group actions and normal field extensions

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 4120, Modern Algebra

The Galois group of $x^4 - 5x^2 + 6$ acting on its roots

Recall the 4 automorphisms of $F = \mathbb{Q}(\sqrt{2}, \sqrt{3})$, the splitting field of $x^4 - 5x^2 + 6$:

$$\begin{array}{rcl} e: a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} & \longmapsto & a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} \\ \phi_2: a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} & \longmapsto & a - b\sqrt{2} + c\sqrt{3} - d\sqrt{6} \\ \phi_3: a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} & \longmapsto & a + b\sqrt{2} - c\sqrt{3} - d\sqrt{6} \\ \phi_4: a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} & \longmapsto & a - b\sqrt{2} - c\sqrt{3} + d\sqrt{6} \end{array}$$

They form the Galois group of $x^4 - 5x^2 + 6$. The multiplication table and Cayley diagram are shown below.

There is a group action of Gal(f(x)) on the set of roots $S = \{\pm\sqrt{2}, \pm\sqrt{3}\}$ of f(x).

The Galois group acts on the roots

Theorem

If $f \in \mathbb{Z}[x]$ is a polynomial with a root in a field extension F of \mathbb{Q} , then any automorphism of F permutes the roots of f.

Said differently, we have a group action of Gal(f(x)) on the set $S = \{r_1, \ldots, r_n\}$ of roots of f(x).

That is, we have a homomorphism

$$\psi$$
: Gal $(f(x)) \longrightarrow \operatorname{Perm}(\{r_1, \ldots, r_n\})$.

If $\phi \in Gal(f(x))$, then $\psi(\phi)$ is a permutation of the roots of f(x).

This permutation is what results by "pressing the ϕ -button" – it permutes the roots of f(x) via the automorphism ϕ of the splitting field of f(x).

Corollary

If the degree of $f \in \mathbb{Z}[x]$ is *n*, then the Galois group of *f* is a subgroup of S_n .

The Galois group acts on the roots

The next results says that " \mathbb{Q} can't tell apart the roots of an irreducible polynomial."

The "One orbit theorem"

Let r_1 and r_2 be roots of an irreducible polynomial over \mathbb{Q} . Then

- (a) There is an isomorphism $\phi : \mathbb{Q}(r_1) \longrightarrow \mathbb{Q}(r_2)$ that fixes \mathbb{Q} and with $\phi(r_1) = r_2$.
- (b) This remains true when Q is replaced with any extension field F, where Q ⊂ F ⊂ C.

Corollary

If f(x) is irreducible over \mathbb{Q} , then for any two roots r_1 and r_2 of f(x), the Galois group Gal(f(x)) contains an automorphism $\phi: r_1 \mapsto r_2$.

In other words, if f(x) is irreducible, then the action of Gal(f(x)) on the set $S = \{r_1, \ldots, r_n\}$ of roots has only one orbit.

Normal field extensions

Definition

An extension field E of F is normal if it is the splitting field of some polynomial f(x).

If E is a normal extension over F, then every irreducible polynomial in F[x] that has a root in E splits over F.

Thus, if you can find an irreducible polynomial that has one root, but not all of its roots in E, then E is *not* a normal extension.

Normal extension theorem

The degree of a normal extension is the order of its Galois group.

Corollary

The order of the Galois group of a polynomial f(x) is the degree of the extension of its splitting field over \mathbb{Q} .

Normal field extensions: Examples

Consider $\mathbb{Q}(\zeta, \sqrt[3]{2}) = \mathbb{Q}(\alpha)$, the splitting field of $f(x) = x^3 - 2$.

It is also the splitting field of $m(x) = x^6 + 108$, the minimal polynomial of $\alpha = \sqrt[3]{2}\sqrt{-3}$.

Let's see which of its intermediate subfields are normal extensions of $\mathbb{Q}.$

■ Q: Trivially normal.

$$\mathbb{Q}(\zeta, \sqrt[3]{2})$$

$$|^{2} \qquad 2$$

$$\mathbb{Q}(\sqrt[3]{2}) \qquad \mathbb{Q}(\zeta\sqrt[3]{2}) \qquad \mathbb{Q}(\zeta\sqrt[3]{2}) \qquad \mathbb{Q}(\zeta^{2}\sqrt[3]{2})$$

$$\mathbb{Q}(\zeta) \qquad |^{3} \qquad 3$$

$$\mathbb{Q}(\zeta) \qquad \mathbb{Q}(\zeta) \qquad \mathbb{Q}(\zeta\sqrt[3]{2}) \qquad \mathbb{Q}(\zeta\sqrt[3]{2}) \qquad \mathbb{Q}(\zeta\sqrt[3]{2})$$

- $\mathbb{Q}(\zeta)$: Splitting field of $x^2 + x + 1$; roots are $\zeta, \zeta^2 \in \mathbb{Q}(\zeta)$. Normal.
- $\mathbb{Q}(\sqrt[3]{2})$: Contains only one root of $x^3 2$, not the other two. Not normal.
- $\mathbb{Q}(\zeta\sqrt[3]{2})$: Contains only one root of $x^3 2$, not the other two. Not normal.
- $\mathbb{Q}(\zeta^2\sqrt[3]{2})$: Contains only one root of $x^3 2$, not the other two. Not normal.
- $\mathbb{Q}(\zeta, \sqrt[3]{2})$: Splitting field of $x^3 2$. Normal.

By the normal extension theorem,

 $|\operatorname{Gal}(\mathbb{Q}(\zeta))| = [\mathbb{Q}(\zeta) : \mathbb{Q}] = 2, \qquad |\operatorname{Gal}(\mathbb{Q}(\zeta, \sqrt[3]{2}))| = [\mathbb{Q}(\zeta, \sqrt[3]{2}) : \mathbb{Q}] = 6.$

Moreover, you can check that $|\operatorname{Gal}(\mathbb{Q}(\sqrt[3]{2}))| = 1 < [\mathbb{Q}(\sqrt[3]{2}) : \mathbb{Q}] = 3.$

The Galois group of $x^3 - 2$

We can now conclusively determine the Galois group of $x^3 - 2$.

By definition, the Galois group of a polynomial is the Galois group of its splitting field, so $Gal(x^3 - 2) = Gal(\mathbb{Q}(\zeta, \sqrt[3]{2})).$

By the normal extension theorem, the order of the Galois group of f(x) is the degree of the extension of its splitting field:

$$|\operatorname{\mathsf{Gal}}(\mathbb{Q}(\zeta,\sqrt[3]{2}))|=[\mathbb{Q}(\zeta,\sqrt[3]{2}):\mathbb{Q}]=6$$
 .

Since the Galois group acts on the roots of $x^3 - 2$, it must be a subgroup of $S_3 \cong D_3$.

There is only one subgroup of S_3 of order 6, so $Gal(x^3 - 2) \cong S_3$. Here is the action diagram of $Gal(x^3 - 2)$ acting on the set $S = \{r_1, r_2, r_3\}$ of roots of $x^3 - 2$:

