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Overview and some history

Plato (5th century B.C.) believed that the only “perfect”
geometric figures were the straight line and the circle.

In Ancient Greek geometry, this philosophy meant that there were only two
instruments available to perform geometric constructions:

1. the ruler: a single unmarked straight edge.

2. the compass: collapses when lifted from the page

Formally, this means that the only permissible
constructions are those granted by Euclid’s
first three postulates.

M. Macauley (Clemson) Lecture 6.8: Impossibility proofs Math 4120, Modern algebra 2 / 9

mailto:macaule@clemson.edu


Overview and some history

Around 300 B.C., ancient Greek mathematician Euclid wrote
a series of thirteen books that he called The Elements.

It is a collection of definitions, postulates (axioms), and
theorems & proofs, covering geometry, elementary number
theory, and the Greeks’ “geometric algebra.”

Book 1 contained Euclid’s famous 10 postulates, and other
basic propositions of geometry.

Using only a ruler and compass, lines can be divided into equal segments, angles can
be bisected, parallel lines can be drawn, n-gons can be “squared,” and so on.

Theorem

The set K ⊂ C of constructible numbers is a field. Moreover, if α ∈ K , then
[Q(α) : Q] = 2n for some integer n.
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Classical constructibility problems, rephrased

Problem 1: Squaring the circle

Given a circle of radius r (and hence of area πr 2), construct a square of area πr 2

(and hence of side-length
√
πr).

If one could square the circle, then
√
π ∈ K ⊂ C, the field of constructible numbers.

However,
Q ⊂ Q(π) ⊂ Q(

√
π)

and so [Q(
√
π) : Q] ≥ [Q(π) : Q] =∞. Hence

√
π is not constructible.

Problem 2: Doubling the cube

Given a cube of length ` (and hence of volume `3), construct a cube of volume 2`3

(and hence of side-length 3
√

2`).

If one could double the cube, then 3
√

2 ∈ K .

However, [Q( 3
√

2) : Q] = 3 is not a power of two. Hence 3
√

2 is not constructible.
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Classical constructibility problems, rephrased

Problem 3: Trisecting an angle

Given e iθ, construct e iθ/3. Or equivalently, construct cos(θ/3) from cos(θ).

We will show that θ = 60◦ cannot be trisected. In other words, that α = cos(20◦)
cannot be constructed from cos(60◦).

The triple angle formula yields

cos(θ) = 4 cos3(θ/3)− 3 cos(θ/3) .

Set θ = 60◦. Plugging in cos(θ) = 1/2 and α = cos(20◦) gives

4α3 − 3α− 1

2
= 0 .

Changing variables by u = 2α, and then multiplying through by 2:

u3 − 3u − 1 = 0 .

Thus, u is the root of the (irreducible!) polynomial x3 − 3x − 1. Therefore,
[Q(u) : Q] = 3, which is not a power of 2.

Hence, u = 2 cos(20◦) is not constructible, so neither is α = cos(20◦).
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Summary

The three classical ruler-and-compass constructions that stumped the ancient Greeks,
when translated in the language of field theory, are as follows:

Problem 1: Squaring the circle

Construct
√
π from 1.

Problem 2: Doubling the cube

Construct 3
√

2 from 1.

Problem 3: Trisecting an angle

Construct cos(θ/3) from cos(θ). [Or cos(20◦) from 1.]

Since none of these numbers these lie in an extension of Q of degree 2n, they are not
constructible.

If one is allowed a “marked ruler,” then these constructions become possible, which
the ancient Greeks were aware of.
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Construction of regular polygons

The ancient Greeks were also interested in constructing regular polygons. They knew
constructions for 3-, 5-, and 15-gons.

In 1796, nineteen-year-old Carl Friedrich Gauß, who was
undecided about whether to study mathematics or languages,
discovered how to construct a regular 17-gon.

Gauß was so pleased with his discovery that he dedicated his
life to mathematics.

He also proved the following theorem about which n-gons are constructible.

Theorem (Gauß, Wantzel)

Let p be an odd prime. A regular p-gon is constructible if and only if p = 22n + 1 for
some n ≥ 0.

The next question to ask is for which n is 22n + 1 prime?
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Construction of regular polygons and Fermat primes

Definition

The nth Fermat number is Fn := 22n + 1. If Fn is prime, then it is a Fermat prime.

The first few Fermat primes are F0 = 3, F1 = 5, F2 = 17, F3 = 257, and F4 = 65537.

They are named after Pierre Fermat (1601–1665), who conjectured in the 1600s that
all Fermat numbers Fn = 22n + 1 are prime.
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Construction of regular polygons and Fermat primes

In 1732, Leonhard Euler disproved Fermat’s
conjecture by demonstrating

F5 = 225+1 = 232+1 = 4294967297 = 641·6700417 .

It is not known if any other Fermat primes exist!

So far, every Fn is known to be composite for 5 ≤ n ≤ 32. In 2014, a computer
showed that 193× 23329782 + 1 is a prime factor of

F3329780 = 223329780 + 1 > 101010
6

.

Theorem (Gauß, Wantzel)

A regular n-gon is constructible if and only if n = 2kp1 · · · pm, where p1, . . . , pm are
distinct Fermat primes.

If these type of problems interest you, take Math 4100! (Number theory)
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