Lecture 7.1: Basic ring theory

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4120, Modern Algebra

Introduction

Definition

A ring is an additive (abelian) group R with an additional binary operation (multiplication), satisfying the distributive law:

$$
x(y+z)=x y+x z \quad \text { and } \quad(y+z) x=y x+z x \quad \forall x, y, z \in R
$$

Remarks

- There need not be multiplicative inverses.
- Multiplication need not be commutative (it may happen that $x y \neq y x$).

A few more terms
If $x y=y x$ for all $x, y \in R$, then R is commutative.
If R has a multiplicative identity $1=1_{R} \neq 0$, we say that " R has identity" or "unity", or " R is a ring with 1. ."

A subring of R is a subset $S \subseteq R$ that is also a ring.

Introduction

Examples

1. $\mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$ are all commutative rings with 1 .
2. \mathbb{Z}_{n} is a commutative ring with 1 .
3. For any ring R with 1 , the set $M_{n}(R)$ of $n \times n$ matrices over R is a ring. It has identity $1_{M_{n}(R)}=I_{n}$ iff R has 1 .
4. For any ring R, the set of functions $F=\{f: R \rightarrow R\}$ is a ring by defining

$$
(f+g)(r)=f(r)+g(r) \quad(f g)(r)=f(r) g(r)
$$

5. The set $S=2 \mathbb{Z}$ is a subring of \mathbb{Z} but it does not have 1 .
6. $S=\left\{\left[\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right]: a \in \mathbb{R}\right\}$ is a subring of $R=M_{2}(\mathbb{R})$. However, note that

$$
1_{R}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad \text { but } \quad 1_{S}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] .
$$

7. If R is a ring and x a variable, then the set

$$
R[x]=\left\{a_{n} x^{n}+\cdots a_{1} x+a_{0} \mid a_{i} \in R\right\}
$$

is called the polynomial ring over R.

Another example: the quaternions
Recall the (unit) quaternion group:
$Q_{4}=\left\langle i, j, k \mid i^{2}=j^{2}=k^{2}=-1, i j=k\right\rangle$.

Allowing addition makes them into a ring \mathbb{H}, called the quaternions, or Hamiltonians:

$$
\mathbb{H}=\{a+b i+c j+d k \mid a, b, c, d \in \mathbb{R}\} .
$$

The set \mathbb{H} is isomorphic to a subring of $M_{n}(\mathbb{R})$, the real-valued 4×4 matrices:

$$
\mathbb{H}=\left\{\left[\begin{array}{cccc}
a & -b & -c & -d \\
-b & a & -d & c \\
c & d & a & -b \\
d & -c & b & a
\end{array}\right]: a, b, c, d \in \mathbb{R}\right\} \subseteq M_{4}(\mathbb{R}) .
$$

Formally, we have an embedding $\phi: \mathbb{H} \hookrightarrow M_{4}(\mathbb{R})$ where

$$
\phi(i)=\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right], \quad \phi(j)=\left[\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right], \quad \phi(k)=\left[\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] .
$$

We say that \mathbb{H} is represented by a set of matrices.

Units and zero divisors

Definition

Let R be a ring with 1. A unit is any $x \in R$ that has a multiplicative inverse. Let $U(R)$ be the set (a multiplicative group) of units of R.

An element $x \in R$ is a left zero divisor if $x y=0$ for some $y \neq 0$. (Right zero divisors are defined analogously.)

Examples

1. Let $R=\mathbb{Z}$. The units are $U(R)=\{-1,1\}$. There are no (nonzero) zero divisors.
2. Let $R=\mathbb{Z}_{10}$. Then 7 is a unit (and $7^{-1}=3$) because $7 \cdot 3=1$. However, 2 is not a unit.
3. Let $R=\mathbb{Z}_{n}$. A nonzero $k \in \mathbb{Z}_{n}$ is a unit if $\operatorname{gcd}(n, k)=1$, and a zero divisor if $\operatorname{gcd}(n, k) \geq 2$.
4. The ring $R=M_{2}(\mathbb{R})$ has zero divisors, such as:

$$
\left[\begin{array}{cc}
1 & -2 \\
-2 & 4
\end{array}\right]\left[\begin{array}{ll}
6 & 2 \\
3 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

The groups of units of $M_{2}(\mathbb{R})$ are the invertible matrices.

Group rings

Let R be a commutative ring (usually, \mathbb{Z}, \mathbb{R}, or \mathbb{C}) and G a finite (multiplicative) group. We can define the group ring $R G$ as

$$
R G:=\left\{a_{1} g_{1}+\cdots+a_{n} g_{n} \mid a_{i} \in R, g_{i} \in G\right\},
$$

where multiplication is defined in the "obvious" way.
For example, let $R=\mathbb{Z}$ and $G=D_{4}=\left\langle r, f \mid r^{4}=f^{2}=r f r f=1\right\rangle$, and consider the elements $x=r+r^{2}-3 f$ and $y=-5 r^{2}+r f$ in $\mathbb{Z} D_{4}$. Their sum is

$$
x+y=r-4 r^{2}-3 f+r f,
$$

and their product is

$$
\begin{aligned}
x y & =\left(r+r^{2}-3 f\right)\left(-5 r^{2}+r f\right)=r\left(-5 r^{2}+r f\right)+r^{2}\left(-5 r^{2}+r f\right)-3 f\left(-5 r^{2}+r f\right) \\
& =-5 r^{3}+r^{2} f-5 r^{4}+r^{3} f+15 f r^{2}-3 f r f=-5-8 r^{3}+16 r^{2} f+r^{3} f .
\end{aligned}
$$

Remarks

- The (real) Hamiltonians \mathbb{H} is not the same ring as $\mathbb{R} Q_{4}$.
- If $|G|>1$, then $R G$ always has zero divisors, because if $|g|=k>1$, then:

$$
(1-g)\left(1+g+\cdots+g^{k-1}\right)=1-g^{k}=1-1=0 .
$$

- $R G$ contains a subring isomorphic to R, and the group of units $U(R G)$ contains a subgroup isomorphic to G.

Types of rings

Definition

If all nonzero elements of R have a multiplicative inverse, then R is a division ring. (Think: "field without commutativity".)

An integral domain is a commutative ring with 1 and with no (nonzero) zero divisors. (Think: "field without inverses".)

A field is just a commutative division ring. Moreover:
fields \subsetneq division rings

$$
\text { fields } \subsetneq \text { integral domains } \subsetneq \text { all rings }
$$

Examples

■ Rings that are not integral domains: \mathbb{Z}_{n} (composite n), $2 \mathbb{Z}, M_{n}(\mathbb{R}), \mathbb{Z} \times \mathbb{Z}, \mathbb{H}$.

- Integral domains that are not fields (or even division rings): $\mathbb{Z}, \mathbb{Z}[x], \mathbb{R}[x], \mathbb{R}[[x]]$ (formal power series).
- Division ring but not a field: \mathbb{H}.

Cancellation

When doing basic algebra, we often take for granted basic properties such as cancellation: $a x=a y \Longrightarrow x=y$. However, this need not hold in all rings!

Examples where cancellation fails

■ In \mathbb{Z}_{6}, note that $2=2 \cdot 1=2 \cdot 4$, but $1 \neq 4$.
$\square \operatorname{In} M_{2}(\mathbb{R})$, note that $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}4 & 1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right]$.

However, everything works fine as long as there aren't any (nonzero) zero divisors.

Proposition

Let R be an integral domain and $a \neq 0$. If $a x=a y$ for some $x, y \in R$, then $x=y$.

Proof

If $a x=a y$, then $a x-a y=a(x-y)=0$.
Since $a \neq 0$ and R has no (nonzero) zero divisors, then $x-y=0$.

Finite integral domains

Lemma (HW)

If R is an integral domain and $0 \neq a \in R$ and $k \in \mathbb{N}$, then $a^{k} \neq 0$.

Theorem

Every finite integral domain is a field.

Proof

Suppose R is a finite integral domain and $0 \neq a \in R$. It suffices to show that a has a multiplicative inverse.

Consider the infinite sequence $a, a^{2}, a^{3}, a^{4}, \ldots$, which must repeat.
Find $i>j$ with $a^{i}=a^{j}$, which means that

$$
0=a^{i}-a^{j}=a^{j}\left(a^{i-j}-1\right)
$$

Since R is an integral domain and $a^{j} \neq 0$, then $a^{i-j}=1$.
Thus, $a \cdot a^{i-j-1}=1$.

