Lecture 7.1: Basic ring theory

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 4120, Modern Algebra

Introduction

Definition

A ring is an additive (abelian) group R with an additional binary operation (multiplication), satisfying the distributive law:

$$x(y+z) = xy + xz$$
 and $(y+z)x = yx + zx$ $\forall x, y, z \in R$.

Remarks

- There need not be multiplicative inverses.
- Multiplication need not be commutative (it may happen that $xy \neq yx$).

A few more terms

If xy = yx for all $x, y \in R$, then R is commutative.

If R has a multiplicative identity $1 = 1_R \neq 0$, we say that "R has identity" or "unity", or "R is a ring with 1."

A subring of R is a subset $S \subseteq R$ that is also a ring.

Introduction

Examples

- 1. $\mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$ are all commutative rings with 1.
- 2. \mathbb{Z}_n is a commutative ring with 1.
- 3. For any ring R with 1, the set $M_n(R)$ of $n \times n$ matrices over R is a ring. It has identity $1_{M_n(R)} = I_n$ iff R has 1.
- 4. For any ring R, the set of functions $F = \{f : R \to R\}$ is a ring by defining

$$(f+g)(r) = f(r) + g(r)$$
 $(fg)(r) = f(r)g(r)$.

- 5. The set $S = 2\mathbb{Z}$ is a subring of \mathbb{Z} but it does *not* have 1.
- 6. $S = \left\{ \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} : a \in \mathbb{R} \right\}$ is a subring of $R = M_2(\mathbb{R})$. However, note that

$$\mathbf{1}_R = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad \mathsf{but} \qquad \mathbf{1}_S = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}.$$

7. If R is a ring and x a variable, then the set

$$R[x] = \{a_n x^n + \cdots + a_1 x + a_0 \mid a_i \in R\}$$

is called the polynomial ring over R.

Another example: the quaternions

Recall the (unit) quaternion group:

$$Q_4 = \langle i, j, k \mid i^2 = j^2 = k^2 = -1, \ ij = k \rangle.$$

Allowing addition makes them into a ring \mathbb{H} , called the quaternions, or Hamiltonians:

$$\mathbb{H} = \{a + bi + cj + dk \mid a, b, c, d \in \mathbb{R}\}.$$

The set \mathbb{H} is isomorphic to a subring of $M_n(\mathbb{R})$, the real-valued 4×4 matrices:

$$\mathbb{H} = \left\{ \begin{bmatrix} a & -b & -c & -d \\ -b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a \end{bmatrix} : a, b, c, d \in \mathbb{R} \right\} \subseteq M_4(\mathbb{R}).$$

Formally, we have an embedding $\phi \colon \mathbb{H} \hookrightarrow M_4(\mathbb{R})$ where

$$\phi(i) = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}, \quad \phi(j) = \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}, \quad \phi(k) = \begin{bmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

We say that $\mathbb H$ is represented by a set of matrices.

M. Macauley (Clemson)

Units and zero divisors

Definition

Let R be a ring with 1. A unit is any $x \in R$ that has a multiplicative inverse. Let U(R) be the set (a multiplicative group) of units of R.

An element $x \in R$ is a left zero divisor if xy = 0 for some $y \neq 0$. (Right zero divisors are defined analogously.)

Examples

- 1. Let $R = \mathbb{Z}$. The units are $U(R) = \{-1, 1\}$. There are no (nonzero) zero divisors.
- 2. Let $R = \mathbb{Z}_{10}$. Then 7 is a unit (and $7^{-1} = 3$) because $7 \cdot 3 = 1$. However, 2 is not a unit.
- 3. Let $R = \mathbb{Z}_n$. A nonzero $k \in \mathbb{Z}_n$ is a unit if gcd(n, k) = 1, and a zero divisor if $gcd(n, k) \ge 2$.
- 4. The ring $R = M_2(\mathbb{R})$ has zero divisors, such as:

$$\begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} 6 & 2 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

The groups of units of $M_2(\mathbb{R})$ are the invertible matrices.

Group rings

Let R be a commutative ring (usually, \mathbb{Z} , \mathbb{R} , or \mathbb{C}) and G a finite (multiplicative) group. We can define the group ring RG as

$$RG := \{a_1g_1 + \cdots + a_ng_n \mid a_i \in R, g_i \in G\},\$$

where multiplication is defined in the "obvious" way.

For example, let $R = \mathbb{Z}$ and $G = D_4 = \langle r, f | r^4 = f^2 = rfrf = 1 \rangle$, and consider the elements $x = r + r^2 - 3f$ and $y = -5r^2 + rf$ in $\mathbb{Z}D_4$. Their sum is

$$x+y=r-4r^2-3f+rf,$$

and their product is

$$xy = (r + r^2 - 3f)(-5r^2 + rf) = r(-5r^2 + rf) + r^2(-5r^2 + rf) - 3f(-5r^2 + rf)$$

= $-5r^3 + r^2f - 5r^4 + r^3f + 15fr^2 - 3frf = -5 - 8r^3 + 16r^2f + r^3f.$

Remarks

- The (real) Hamiltonians \mathbb{H} is *not* the same ring as $\mathbb{R}Q_4$.
- If |G| > 1, then RG always has zero divisors, because if |g| = k > 1, then:

$$(1-g)(1+g+\cdots+g^{k-1})=1-g^k=1-1=0.$$

• RG contains a subring isomorphic to R, and the group of units U(RG) contains a subgroup isomorphic to G.

M. Macauley (Clemson)

Types of rings

Definition

If all nonzero elements of R have a multiplicative inverse, then R is a division ring. (Think: "field without commutativity".)

An integral domain is a commutative ring with 1 and with no (nonzero) zero divisors. (Think: "field without inverses".)

A field is just a commutative division ring. Moreover:

fields \subsetneq division rings

fields \subsetneq integral domains \subsetneq all rings

Examples

- Rings that are not integral domains: \mathbb{Z}_n (composite *n*), 2 \mathbb{Z} , $M_n(\mathbb{R})$, $\mathbb{Z} \times \mathbb{Z}$, \mathbb{H} .
- Integral domains that are not fields (or even division rings): Z, Z[x], ℝ[x], ℝ[[x]] (formal power series).
- Division ring but not a field: III.

Cancellation

When doing basic algebra, we often take for granted basic properties such as cancellation: $ax = ay \implies x = y$. However, *this need not hold in all rings*!

Examples where cancellation fails

In \mathbb{Z}_6 , note that $2 = 2 \cdot 1 = 2 \cdot 4$, but $1 \neq 4$.

• In
$$M_2(\mathbb{R})$$
, note that $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 4 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$.

However, everything works fine as long as there aren't any (nonzero) zero divisors.

Proposition

Let R be an integral domain and $a \neq 0$. If ax = ay for some $x, y \in R$, then x = y.

Proof

If ax = ay, then ax - ay = a(x - y) = 0.

Since $a \neq 0$ and R has no (nonzero) zero divisors, then x - y = 0.

Finite integral domains

Lemma (HW)

If R is an integral domain and $0 \neq a \in R$ and $k \in \mathbb{N}$, then $a^k \neq 0$.

Theorem

Every finite integral domain is a field.

Proof

Suppose *R* is a finite integral domain and $0 \neq a \in R$. It suffices to show that *a* has a multiplicative inverse.

Consider the infinite sequence a, a^2, a^3, a^4, \ldots , which must repeat.

Find i > j with $a^i = a^j$, which means that

$$0 = a^{i} - a^{j} = a^{j}(a^{i-j} - 1).$$

Since R is an integral domain and $a^{j} \neq 0$, then $a^{i-j} = 1$.

Thus, $a \cdot a^{i-j-1} = 1$.