Lecture 7.3: Ring homomorphisms

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 4120, Modern Algebra

Motivation (spoilers!)

Many of the big ideas from group homomorphisms carry over to ring homomorphisms.

Group theory

- The quotient group G/N exists iff N is a normal subgroup.
- A homomorphism is a structure-preserving map: f(x * y) = f(x) * f(y).
- The kernel of a homomorphism is a normal subgroup: Ker $\phi \trianglelefteq G$.
- For every normal subgroup $N \trianglelefteq G$, there is a natural quotient homomorphism $\phi: G \to G/N, \ \phi(g) = gN.$
- There are four standard isomorphism theorems for groups.

Ring theory

- The quotient ring R/I exists iff I is a two-sided ideal.
- A homomorphism is a structure-preserving map: f(x + y) = f(x) + f(y) and f(xy) = f(x)f(y).
- The kernel of a homomorphism is a two-sided ideal: Ker $\phi \trianglelefteq R$.
- For every two-sided ideal $I \leq R$, there is a natural quotient homomorphism $\phi: R \to R/I, \ \phi(r) = r + I.$
- There are four standard isomorphism theorems for rings.

Ring homomorphisms

Definition

A ring homomorphism is a function $f: R \rightarrow S$ satisfying

f(x+y) = f(x) + f(y) and f(xy) = f(x)f(y) for all $x, y \in R$.

A ring isomorphism is a homomorphism that is bijective.

The kernel $f: R \to S$ is the set Ker $f := \{x \in R : f(x) = 0\}$.

Examples

- 1. The function $\phi: \mathbb{Z} \to \mathbb{Z}_n$ that sends $k \mapsto k \pmod{n}$ is a ring homomorphism with $\text{Ker}(\phi) = n\mathbb{Z}$.
- 2. For a fixed real number $\alpha \in \mathbb{R},$ the "evaluation function"

$$\phi \colon \mathbb{R}[x] \longrightarrow \mathbb{R}, \qquad \phi \colon p(x) \longmapsto p(\alpha)$$

is a homomorphism. The kernel consists of all polynomials that have α as a root.

3. The following is a homomorphism, for the ideal $I = (x^2 + x + 1)$ in $\mathbb{Z}_2[x]$:

$$\phi \colon \mathbb{Z}_2[x] \longrightarrow \mathbb{Z}_2[x]/I, \qquad f(x) \longmapsto f(x) + I.$$

The isomorphism theorems for rings

Fundamental homomorphism theorem

If $\phi: R \to S$ is a ring homomorphism, then Ker ϕ is an ideal and $\operatorname{Im}(\phi) \cong R/\operatorname{Ker}(\phi)$.

Proof (HW)

The statement holds for the underlying additive group R. Thus, it remains to show that Ker ϕ is a (two-sided) ideal, and the following map is a ring homomorphism:

$$g: R/I \longrightarrow \operatorname{Im} \phi, \qquad g(x+I) = \phi(x).$$

The second isomorphism theorem for rings

Suppose S is a subring and I an ideal of R. Then

(i) The sum $S + I = \{s + i \mid s \in S, i \in I\}$ is a subring of R and the intersection $S \cap I$ is an ideal of S.

(ii) The following quotient rings are isomorphic:

 $(S+I)/I \cong S/(S\cap I)$.

Proof (sketch)

S + I is an additive subgroup, and it's closed under multiplication because

$$s_1, s_2 \in S, \ i_1, i_2 \in I \implies (s_1 + i_1)(s_2 + i_2) = \underbrace{s_1 s_2}_{\in S} + \underbrace{s_1 i_2 + i_1 s_2 + i_1 i_2}_{\in I} \in S + I.$$

Showing $S \cap I$ is an ideal of S is straightforward (homework exercise).

We already know that $(S + I)/I \cong S/(S \cap I)$ as additive groups.

One explicit isomorphism is $\phi: s + (S \cap I) \mapsto s + I$. It is easy to check that $\phi: 1 \mapsto 1$ and ϕ preserves products.

The third isomorphism theorem for rings

Freshman theorem

Suppose R is a ring with ideals $J \subseteq I$. Then I/J is an ideal of R/J and

 $(R/J)/(I/J) \cong R/I$.

(Thanks to Zach Teitler of Boise State for the concept and graphic!)

The fourth isomorphism theorem for rings

Correspondence theorem

Let *I* be an ideal of *R*. There is a bijective correspondence between subrings (& ideals) of *R*/*I* and subrings (& ideals) of *R* that contain *I*. In particular, every ideal of *R*/*I* has the form J/I, for some ideal *J* satisfying $I \subseteq J \subseteq R$.

subrings & ideals that contain I

subrings & ideals of R/I

Maximal ideals

Definition

An ideal *I* of *R* is maximal if $I \neq R$ and if $I \subseteq J \subseteq R$ holds for some ideal *J*, then J = I or J = R.

A ring R is simple if its only (two-sided) ideals are 0 and R.

Examples

- 1. If $n \neq 0$, then the ideal M = (n) of $R = \mathbb{Z}$ is maximal if and only if n is prime.
- 2. Let $R = \mathbb{Q}[x]$ be the set of all polynomials over \mathbb{Q} . The ideal M = (x) consisting of all polynomials with constant term zero is a maximal ideal.

Elements in the quotient ring $\mathbb{Q}[x]/(x)$ have the form $f(x) + M = a_0 + M$.

Let R = Z₂[x], the polynomials over Z₂. The ideal M = (x² + x + 1) is maximal, and R/M ≅ F₄, the (unique) finite field of order 4.

In all three examples above, the quotient R/M is a field.

M. Macauley (Clemson)

Maximal ideals

Theorem

Let R be a commutative ring with 1. The following are equivalent for an ideal $I \subseteq R$.

- (i) *I* is a maximal ideal;
- (ii) R/I is simple;
- (iii) R/I is a field.

Proof

The equivalence (i) \Leftrightarrow (ii) is immediate from the Correspondence Theorem.

For (ii) \Leftrightarrow (iii), we'll show that an *arbitrary* ring *R* is simple iff *R* is a field.

" \Rightarrow ": Assume *R* is simple. Then (*a*) = *R* for any nonzero *a* \in *R*.

Thus, $1 \in (a)$, so 1 = ba for some $b \in R$, so $a \in U(R)$ and R is a field. \checkmark

" \Leftarrow ": Let $I \subseteq R$ be a nonzero ideal of a field R. Take any nonzero $a \in I$.

Then $a^{-1}a \in I$, and so $1 \in I$, which means I = R.

Prime ideals

Definition

Let R be a commutative ring. An ideal $P \subset R$ is prime if $ab \in P$ implies either $a \in P$ or $b \in P$.

Note that $p \in \mathbb{N}$ is a prime number iff p = ab implies either a = p or b = p.

Examples

- 1. The ideal (n) of \mathbb{Z} is a prime ideal iff n is a prime number (possibly n = 0).
- 2. In the polynomial ring $\mathbb{Z}[x]$, the ideal I = (2, x) is a prime ideal. It consists of all polynomials whose constant coefficient is even.

Theorem

An ideal $P \subseteq R$ is prime iff R/P is an integral domain.

The proof is straightforward (HW). Since fields are integral domains, the following is immediate:

Corollary

In a commutative ring, every maximal ideal is prime.