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Introduction

A ring is in some sense, a generalization of the familiar number systems like Z, R,
and C, where we are allowed to add, subtract, and multiply.

Two key properties about these structures are:

multiplication is commutative,

there are no (nonzero) zero divisors.

Blanket assumption

Throughout this lecture, unless explicitly mentioned otherwise, R is assumed to be an
integral domain, and we will define R∗ := R \ {0}.

The integers have several basic properties that we usually take for granted:

every nonzero number can be factored uniquely into primes;

any two numbers have a unique greatest common divisor and least common
multiple;

there is a Euclidean algorithm, which can find the gcd of two numbers.

Surprisingly, these need not always hold in integrals domains! We would like to
understand this better.
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Divisibility

Definition

If a, b ∈ R, say that a divides b, or b is a multiple of a if b = ac for some c ∈ R. We
write a | b.

If a | b and b | a, then a and b are associates, written a ∼ b.

Examples

In Z: n and −n are associates.

In R[x ]: f (x) and c · f (x) are associates for any c 6= 0.

The only associate of 0 is itself.

The associates of 1 are the units of R.

Proposition (HW)

Two elements a, b ∈ R are associates if and only if a = bu for some unit u ∈ U(R).

This defines an equivalence relation on R, and partitions R into equivalence classes.
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Irreducibles and primes

Note that units divide everything: if b ∈ R and u ∈ U(R), then u | b.

Definition

If b ∈ R is not a unit, and the only divisors of b are units and associates of b, then b
is irreducible.

An element p ∈ R is prime if p is not a unit, and p | ab implies p | a or p | b.

Proposition

If 0 6= p ∈ R is prime, then p is irreducible.

Proof

Suppose p is prime but not irreducible. Then p = ab with a, b 6∈ U(R).

Then (wlog) p | a, so a = pc for some c ∈ R. Now,

p = ab = (pc)b = p(cb) .

This means that cb = 1, and thus b ∈ U(R), a contradiction. �
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Irreducibles and primes

Caveat: Irreducible 6⇒ prime

Consider the ring R−5 := {a + b
√
−5 : a, b ∈ Z}.

3 | (2 +
√
−5)(2−

√
−5) = 9 = 3 · 3 ,

but 3 - 2 +
√
−5 and 3 - 2−

√
−5.

Thus, 3 is irreducible in R−5 but not prime.

When irreducibles fail to be prime, we can lose nice properties like unique
factorization.

Things can get really bad: not even the lengths of factorizations into irreducibles
need be the same!

For example, consider the ring R = Z[x2, x3]. Then

x6 = x2 · x2 · x2 = x3 · x3.

The element x2 ∈ R is not prime because x2 | x3 · x3 yet x2 - x3 in R (note: x 6∈ R).
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Principal ideal domains
Fortunately, there is a type of ring where such “bad things” don’t happen.

Definition

An ideal I generated by a single element a ∈ R is called a principal ideal. We denote
this by I = (a).

If every ideal of R is principal, then R is a principal ideal domain (PID).

Examples

The following are all PIDs (stated without proof):

The ring of integers, Z.

Any field F .

The polynomial ring F [x ] over a field.

As we will see shortly, PIDs are “nice” rings. Here are some properties they enjoy:

pairs of elements have a “greatest common divisor” & “least common multiple”;

irreducible ⇒ prime;

Every element factors uniquely into primes.
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Greatest common divisors & least common multiples

Proposition

If I ⊆ Z is an ideal, and a ∈ I is its smallest positive element, then I = (a).

Proof

Pick any positive b ∈ I . Write b = aq + r , for q, r ∈ Z and 0 ≤ r < a.

Then r = b − aq ∈ I , so r = 0. Therefore, b = qa ∈ (a). �

Definition

A common divisor of a, b ∈ R is an element d ∈ R such that d | a and d | b.

Moreover, d is a greatest common divisor (GCD) if c | d for all other common
divisors c of a and b.

A common multiple of a, b ∈ R is an element m ∈ R such that a | m and b | m.

Moreover, m is a least common multiple (LCM) if m | n for all other common
multiples n of a and b.
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Nice properties of PIDs

Proposition

If R is a PID, then any a, b ∈ R∗ have a GCD, d = gcd(a, b).

It is unique up to associates, and can be written as d = xa + yb for some x , y ∈ R.

Proof

Existence. The ideal generated by a and b is

I = (a, b) = {ua + vb : u, v ∈ R} .

Since R is a PID, we can write I = (d) for some d ∈ I , and so d = xa + yb.

Since a, b ∈ (d), both d | a and d | b hold.

If c is a divisor of a & b, then c | xa + yb = d , so d is a GCD for a and b. X

Uniqueness. If d ′ is another GCD, then d | d ′ and d ′ | d , so d ∼ d ′. X �
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Nice properties of PIDs

Corollary

If R is a PID, then every irreducible element is prime.

Proof

Let p ∈ R be irreducible and suppose p | ab for some a, b ∈ R.

If p - a, then gcd(p, a) = 1, so we may write 1 = xa + yp for some x , y ∈ R. Thus

b = (xa + yp)b = x(ab) + (yb)p .

Since p | x(ab) and p | (yb)p, then p | x(ab) + (yb)p = b. �

Not surprisingly, least common multiples also have a nice characterization in PIDs.

Proposition (HW)

If R is a PID, then any a, b ∈ R∗ have an LCM, m = lcm(a, b).

It is unique up to associates, and can be characterized as a generator of the ideal
I := (a) ∩ (b).
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Unique factorization domains

Definition

An integral domain is a unique factorization domain (UFD) if:

(i) Every nonzero element is a product of irreducible elements;

(ii) Every irreducible element is prime.

Examples

1. Z is a UFD: Every integer n ∈ Z can be uniquely factored as a product of
irreducibles (primes):

n = pd1
1 pd2

2 · · · p
dk
k .

This is the fundamental theorem of arithmetic.

2. The ring Z[x ] is a UFD, because every polynomial can be factored into
irreducibles. But it is not a PID because the following ideal is not principal:

(2, x) = {f (x) : the constant term is even}.

3. The ring R−5 is not a UFD because 9 = 3 · 3 = (2 +
√
−5)(2−

√
−5).

4. We’ve shown that (ii) holds for PIDs. Next, we will see that (i) holds as well.
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Unique factorization domains

Theorem

If R is a PID, then R is a UFD.

Proof

We need to show Condition (i) holds: every element is a product of irreducibles. A
ring is Noetherian if every ascending chain of ideals

I1 ⊆ I2 ⊆ I3 ⊆ · · ·

stabilizes, meaning that Ik = Ik+1 = Ik+2 = · · · holds for some k.

Suppose R is a PID. It is not hard to show that R is Noetherian (HW). Define

X = {a ∈ R∗ \ U(R) : a can’t be written as a product of irreducibles}.

If X 6= ∅, then pick a1 ∈ X . Factor this as a1 = a2b, where a2 ∈ X and b 6∈ U(R).
Then (a1) ( (a2) ( R, and repeat this process. We get an ascending chain

(a1) ( (a2) ( (a3) ( · · ·

that does not stabilize. This is impossible in a PID, so X = ∅. �
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Summary of ring types

fields

Q

AR
R(
√
−π) Q(

√
m)

Z2[x]/(x2+x+1)

F256

CZp

Q( 3
√
2, ζ)

PIDs
F [x ] Z

UFDs
F [x , y ] Z[x ]

integral domains
Z[x2, x3] R−5

commutative rings

2Z

Z× Z Z6

all rings
RG Mn(R)

H
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