Lecture 7.4: Divisibility and factorization

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 4120, Modern Algebra

Introduction

A ring is in some sense, a generalization of the familiar number systems like \mathbb{Z} , \mathbb{R} , and \mathbb{C} , where we are allowed to add, subtract, and multiply.

Two key properties about these structures are:

- multiplication is commutative,
- there are no (nonzero) zero divisors.

Blanket assumption

Throughout this lecture, unless explicitly mentioned otherwise, R is assumed to be an integral domain, and we will define $R^* := R \setminus \{0\}$.

The integers have several basic properties that we usually take for granted:

- every nonzero number can be factored uniquely into primes;
- any two numbers have a unique greatest common divisor and least common multiple;
- there is a Euclidean algorithm, which can find the gcd of two numbers.

Surprisingly, these need not always hold in integrals domains! We would like to understand this better.

Divisibility

Definition

If $a, b \in R$, say that a divides b, or b is a multiple of a if b = ac for some $c \in R$. We write $a \mid b$.

If $a \mid b$ and $b \mid a$, then a and b are associates, written $a \sim b$.

Examples

- In \mathbb{Z} : *n* and *-n* are associates.
- In $\mathbb{R}[x]$: f(x) and $c \cdot f(x)$ are associates for any $c \neq 0$.
- The only associate of 0 is itself.
- The associates of 1 are the units of *R*.

Proposition (HW)

Two elements $a, b \in R$ are associates if and only if a = bu for some unit $u \in U(R)$.

This defines an equivalence relation on R, and partitions R into equivalence classes.

Irreducibles and primes

Note that units divide everything: if $b \in R$ and $u \in U(R)$, then $u \mid b$.

Definition

If $b \in R$ is not a unit, and the only divisors of b are units and associates of b, then b is irreducible.

An element $p \in R$ is prime if p is not a unit, and $p \mid ab$ implies $p \mid a$ or $p \mid b$.

Proposition

If $0 \neq p \in R$ is prime, then p is irreducible.

Proof

Suppose p is prime but not irreducible. Then p = ab with $a, b \notin U(R)$.

Then (wlog) $p \mid a$, so a = pc for some $c \in R$. Now,

$$p = ab = (pc)b = p(cb)$$
.

This means that cb = 1, and thus $b \in U(R)$, a contradiction.

Irreducibles and primes

Caveat: Irreducible \Rightarrow prime

Consider the ring $R_{-5} := \{a + b\sqrt{-5} : a, b \in \mathbb{Z}\}.$ $3 \mid (2 + \sqrt{-5})(2 - \sqrt{-5}) = 9 = 3 \cdot 3.$

but $3 \nmid 2 + \sqrt{-5}$ and $3 \nmid 2 - \sqrt{-5}$.

Thus, 3 is irreducible in R_{-5} but *not* prime.

When irreducibles fail to be prime, we can lose nice properties like unique factorization.

Things can get really bad: not even the *lengths* of factorizations into irreducibles need be the same!

For example, consider the ring $R = \mathbb{Z}[x^2, x^3]$. Then

$$x^6 = x^2 \cdot x^2 \cdot x^2 = x^3 \cdot x^3.$$

The element $x^2 \in R$ is not prime because $x^2 \mid x^3 \cdot x^3$ yet $x^2 \nmid x^3$ in R (note: $x \notin R$).

Principal ideal domains

Fortunately, there is a type of ring where such "bad things" don't happen.

Definition

An ideal I generated by a single element $a \in R$ is called a principal ideal. We denote this by I = (a).

If every ideal of R is principal, then R is a principal ideal domain (PID).

Examples

The following are all PIDs (stated without proof):

- The ring of integers, \mathbb{Z} .
- Any field F.
- The polynomial ring F[x] over a field.

As we will see shortly, PIDs are "nice" rings. Here are some properties they enjoy:

- pairs of elements have a "greatest common divisor" & "least common multiple";
- irreducible \Rightarrow prime;
- Every element factors uniquely into primes.

Greatest common divisors & least common multiples

Proposition

If $I \subseteq \mathbb{Z}$ is an ideal, and $a \in I$ is its smallest positive element, then I = (a).

Proof

```
Pick any positive b \in I. Write b = aq + r, for q, r \in \mathbb{Z} and 0 \le r < a.
```

Then $r = b - aq \in I$, so r = 0. Therefore, $b = qa \in (a)$.

Definition

A common divisor of $a, b \in R$ is an element $d \in R$ such that $d \mid a$ and $d \mid b$.

Moreover, d is a greatest common divisor (GCD) if $c \mid d$ for all other common divisors c of a and b.

A common multiple of $a, b \in R$ is an element $m \in R$ such that $a \mid m$ and $b \mid m$.

Moreover, *m* is a least common multiple (LCM) if $m \mid n$ for all other common multiples *n* of *a* and *b*.

Nice properties of PIDs

Proposition

If R is a PID, then any $a, b \in R^*$ have a GCD, d = gcd(a, b).

It is *unique up to associates*, and can be written as d = xa + yb for some $x, y \in R$.

Proof

Existence. The ideal generated by *a* and *b* is

$$I = (a, b) = \{ua + vb : u, v \in R\}.$$

Since R is a PID, we can write I = (d) for some $d \in I$, and so d = xa + yb.

Since $a, b \in (d)$, both $d \mid a$ and $d \mid b$ hold.

If c is a divisor of a & b, then $c \mid xa + yb = d$, so d is a GCD for a and b. \checkmark

Uniqueness. If d' is another GCD, then $d \mid d'$ and $d' \mid d$, so $d \sim d'$.

Nice properties of PIDs

Corollary

If R is a PID, then every irreducible element is prime.

Proof

Let $p \in R$ be irreducible and suppose $p \mid ab$ for some $a, b \in R$.

If $p \nmid a$, then gcd(p, a) = 1, so we may write 1 = xa + yp for some $x, y \in R$. Thus

$$b = (xa + yp)b = x(ab) + (yb)p.$$

Since $p \mid x(ab)$ and $p \mid (yb)p$, then $p \mid x(ab) + (yb)p = b$.

Not surprisingly, least common multiples also have a nice characterization in PIDs.

Proposition (HW)

If R is a PID, then any $a, b \in R^*$ have an LCM, m = lcm(a, b).

It is *unique up to associates*, and can be characterized as a generator of the ideal $l := (a) \cap (b)$.

Unique factorization domains

Definition

An integral domain is a unique factorization domain (UFD) if:

- (i) Every nonzero element is a product of irreducible elements;
- (ii) Every irreducible element is prime.

Examples

1. \mathbb{Z} is a UFD: Every integer $n \in \mathbb{Z}$ can be uniquely factored as a product of irreducibles (primes):

$$n=p_1^{d_1}p_2^{d_2}\cdots p_k^{d_k}.$$

This is the fundamental theorem of arithmetic.

 The ring Z[x] is a UFD, because every polynomial can be factored into irreducibles. But it is not a PID because the following ideal is not principal:

 $(2, x) = \{f(x) : \text{ the constant term is even}\}.$

- 3. The ring R_{-5} is not a UFD because $9 = 3 \cdot 3 = (2 + \sqrt{-5})(2 \sqrt{-5})$.
- 4. We've shown that (ii) holds for PIDs. Next, we will see that (i) holds as well.

Unique factorization domains

Theorem

If R is a PID, then R is a UFD.

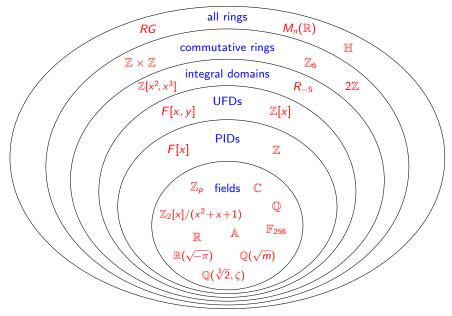
Proof

We need to show Condition (i) holds: every element is a product of irreducibles. A ring is Noetherian if every ascending chain of ideals

$$I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$$

stabilizes, meaning that $I_k = I_{k+1} = I_{k+2} = \cdots$ holds for some k.

Suppose R is a PID. It is not hard to show that R is Noetherian (HW). Define


 $X = \{a \in R^* \setminus U(R) : a \text{ can't be written as a product of irreducibles} \}.$

If $X \neq \emptyset$, then pick $a_1 \in X$. Factor this as $a_1 = a_2 b$, where $a_2 \in X$ and $b \notin U(R)$. Then $(a_1) \subsetneq (a_2) \subsetneq R$, and repeat this process. We get an ascending chain

$$(a_1) \subsetneq (a_2) \subsetneq (a_3) \subsetneq \cdots$$

that does not stabilize. This is impossible in a PID, so $X = \emptyset$.

Summary of ring types

