Lecture 7.5: Euclidean domains and algebraic integers

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4120, Modern Algebra

The Euclidean algorithm

Around 300 B.C., Euclid wrote his famous book, the Elements, in which he described what is now known as the Euclidean algorithm:

Proposition VII. 2 (Euclid's Elements)

Given two numbers not prime to one another, to find their greatest common measure.

The algorithm works due to two key observations:

- If $a \mid b$, then $\operatorname{gcd}(a, b)=a$;
- If $a=b q+r$, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.

This is best seen by an example: Let $a=654$ and $b=360$.

$$
\begin{array}{ll}
654=360 \cdot 1+294 & \operatorname{gcd}(654,360)=\operatorname{gcd}(360,294) \\
360=294 \cdot 1+66 & \operatorname{gcd}(360,294)=\operatorname{gcd}(294,66) \\
294=66 \cdot 4+30 & \operatorname{gcd}(294,66)=\operatorname{gcd}(66,30) \\
66=30 \cdot 2+6 & \operatorname{gcd}(66,30)=\operatorname{gcd}(30,6) \\
30=6 \cdot 5 & \operatorname{gcd}(30,6)=6 .
\end{array}
$$

We conclude that $\operatorname{gcd}(654,360)=6$.

Euclidean domains

Loosely speaking, a Euclidean domain is any ring for which the Euclidean algorithm still works.

Definition

An integral domain R is Euclidean if it has a degree function $d: R^{*} \rightarrow \mathbb{Z}$ satisfying:
(i) non-negativity: $d(r) \geq 0 \quad \forall r \in R^{*}$.
(ii) monotonicity: $d(a) \leq d(a b)$ for all $a, b \in R^{*}$.
(iii) division-with-remainder property: For all $a, b \in R, b \neq 0$, there are $q, r \in R$ such that

$$
a=b q+r \quad \text { with } \quad r=0 \quad \text { or } \quad d(r)<d(b)
$$

Note that Property (ii) could be restated to say: If $a \mid b$, then $d(a) \leq d(b)$;

Examples

■ $R=\mathbb{Z}$ is Euclidean. Define $d(r)=|r|$.

- $R=F[x]$ is Euclidean if F is a field. Define $d(f(x))=\operatorname{deg} f(x)$.
- The Gaussian integers $R_{-1}=\mathbb{Z}[\sqrt{-1}]=\{a+b i: a, b \in \mathbb{Z}\}$ is Euclidean with degree function $d(a+b i)=a^{2}+b^{2}$.

Euclidean domains

Proposition

If R is Euclidean, then $U(R)=\left\{x \in R^{*}: d(x)=d(1)\right\}$.

Proof

\subseteq ": First, we'll show that associates have the same degree. Take $a \sim b$ in R^{*} :

$$
\begin{aligned}
& a \mid b \quad \Longrightarrow d(a) \leq d(b) \\
& b \mid a \quad \Longrightarrow \quad d(b) \leq d(a)
\end{aligned} \quad \Longrightarrow \quad d(a)=d(b)
$$

If $u \in U(R)$, then $u \sim 1$, and so $d(u)=d(1)$. \checkmark
" \supseteq ": Suppose $x \in R^{*}$ and $d(x)=d(1)$.
Then $1=q x+r$ for some $q \in R$ with either $r=0$ or $d(r)<d(x)=d(1)$.
If $r \neq 0$, then $d(1) \leq d(r)$ since $1 \mid r$.
Thus, $r=0$, and so $q x=1$, hence $x \in U(R)$.

Euclidean domains

Proposition

If R is Euclidean, then R is a PID.

Proof

Let $I \neq 0$ be an ideal and pick some $b \in I$ with $d(b)$ minimal.

Pick $a \in I$, and write $a=b q+r$ with either $r=0$, or $d(r)<d(b)$.
This latter case is impossible: $r=a-b q \in I$, and by minimality, $d(b) \leq d(r)$.
Therefore, $r=0$, which means $a=b q \in(b)$. Since a was arbitrary, $I=(b)$.

Exercises.

(i) The ideal $I=(3,2+\sqrt{-5})$ is not principal in R_{-5}.
(ii) If R is an integral domain, then $I=(x, y)$ is not principal in $R[x, y]$.

Corollary

The rings R_{-5} (not a PID or UFD) and $R[x, y]$ (not a PID) are not Euclidean.

Algebraic integers

The algebraic integers are the roots of monic polynomials in $\mathbb{Z}[x]$. This is a subring of the algebraic numbers (roots of all polynomials in $\mathbb{Z}[x]$).

Assume $m \in \mathbb{Z}$ is square-free with $m \neq 0,1$. Recall the quadratic field

$$
\mathbb{Q}(\sqrt{m})=\{p+q \sqrt{m} \mid p, q \in \mathbb{Q}\} .
$$

Definition

The ring R_{m} is the set of algebraic integers in $\mathbb{Q}(\sqrt{m})$, i.e., the subring consisting of those numbers that are roots of monic quadratic polynomials $x^{2}+c x+d \in \mathbb{Z}[x]$.

Facts

- R_{m} is an integral domain with 1.
- Since m is square-free, $m \not \equiv 0(\bmod 4)$. For the other three cases:

$$
R_{m}= \begin{cases}\mathbb{Z}[\sqrt{m}]=\{a+b \sqrt{m}: a, b \in \mathbb{Z}\} & m \equiv 2 \text { or } 3 \quad(\bmod 4) \\ \mathbb{Z}\left[\frac{1+\sqrt{m}}{2}\right]=\left\{a+b\left(\frac{1+\sqrt{m}}{2}\right): a, b \in \mathbb{Z}\right\} & m \equiv 1 \quad(\bmod 4)\end{cases}
$$

- R_{-1} is the Gaussian integers, which is a PID. (easy)
- R_{-19} is a PID. (hard)

Algebraic integers

Definition

For $x=r+s \sqrt{m} \in \mathbb{Q}(\sqrt{m})$, define the norm of x to be

$$
N(x)=(r+s \sqrt{m})(r-s \sqrt{m})=r^{2}-m s^{2} .
$$

R_{m} is norm-Euclidean if it is a Euclidean domain with $d(x)=|N(x)|$.

Note that the norm is multiplicative: $N(x y)=N(x) N(y)$.

Exercises

Assume $m \in \mathbb{Z}$ is square-free, with $m \neq 0,1$.
■ $u \in U\left(R_{m}\right)$ iff $|N(u)|=1$.

- If $m \geq 2$, then $U\left(R_{m}\right)$ is infinite.
- $U\left(R_{-1}\right)=\{ \pm 1, \pm i\}$ and $U\left(R_{-3}\right)=\left\{ \pm 1, \pm \frac{1 \pm \sqrt{-3}}{2}\right\}$.
- If $m=-2$ or $m<-3$, then $U\left(R_{m}\right)=\{ \pm 1\}$.

Euclidean domains and algebraic integers

Theorem

R_{m} is norm-Euclidean iff

$$
m \in\{-11,-7,-3,-2,-1,2,3,5,6,7,11,13,17,19,21,29,33,37,41,57,73\}
$$

Theorem (D.A. Clark, 1994)

The ring R_{69} is a Euclidean domain that is not norm-Euclidean.

Let $\alpha=(1+\sqrt{69}) / 2$ and $c>25$ be an integer. Then the following degree function works for R_{69}, defined on the prime elements:

$$
d(p)=\left\{\begin{array}{cl}
|N(p)| & \text { if } p \neq 10+3 \alpha \\
c & \text { if } p=10+3 \alpha
\end{array}\right.
$$

Theorem

If $m<0$ and $m \notin\{-11,-7,-3,-2,-1\}$, then R_{m} is not Euclidean.

Open problem

Classify which R_{m} 's are PIDs, and which are Euclidean.

PIDs that are not Euclidean

Theorem

If $m<0$, then R_{m} is a PID iff

$$
m \in\{\underbrace{-1,-2,-3,-7,-11}_{\text {Euclidean }},-19,-43,-67,-163\} .
$$

Recall that R_{m} is norm-Euclidean iff

$$
m \in\{-11,-7,-3,-2,-1,2,3,5,6,7,11,13,17,19,21,29,33,37,41,57,73\} .
$$

Corollary

If $m<0$, then R_{m} is a PID that is not Euclidean iff $m \in\{-19,-43,-67,-163\}$.

Algebraic integers

Figure: Algebraic numbers in the complex plane. Colors indicate the coefficient of the leading term: red $=1$ (algebraic integer), green $=2$, blue $=3$, yellow $=4$. Large dots mean fewer terms and smaller coefficients. Image from Wikipedia (made by Stephen J. Brooks).

Algebraic integers

i

Figure: Algebraic integers in the complex plane. Each red dot is the root of a monic polynomial of degree ≤ 7 with coefficients from $\{0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5\}$. From Wikipedia.

Summary of ring types

