Lecture 7.5: Euclidean domains and algebraic integers

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 4120, Modern Algebra

The Euclidean algorithm

Around 300 B.C., Euclid wrote his famous book, the *Elements*, in which he described what is now known as the Euclidean algorithm:

Proposition VII.2 (Euclid's *Elements*)

Given two numbers not prime to one another, to find their greatest common measure.

The algorithm works due to two key observations:

- If $a \mid b$, then gcd(a, b) = a;
- If a = bq + r, then gcd(a, b) = gcd(b, r).

This is best seen by an example: Let a = 654 and b = 360.

 $\begin{array}{ll} 654 = 360 \cdot 1 + 294 \\ 360 = 294 \cdot 1 + 66 \\ 294 = 66 \cdot 4 + 30 \\ 66 = 30 \cdot 2 + 6 \\ 30 = 6 \cdot 5 \end{array} \qquad \begin{array}{ll} \gcd(654, 360) = \gcd(360, 294) \\ \gcd(360, 294) = \gcd(294, 66) \\ \gcd(294, 66) = \gcd(66, 30) \\ \gcd(66, 30) = \gcd(30, 6) \\ \gcd(30, 6) = 6. \end{array}$

We conclude that gcd(654, 360) = 6.

Euclidean domains

Loosely speaking, a Euclidean domain is any ring for which the Euclidean algorithm still works.

Definition

An integral domain R is Euclidean if it has a degree function $d: R^* \to \mathbb{Z}$ satisfying:

- (i) non-negativity: $d(r) \ge 0 \quad \forall r \in R^*$.
- (ii) monotonicity: $d(a) \leq d(ab)$ for all $a, b \in R^*$.
- (iii) division-with-remainder property: For all $a, b \in R$, $b \neq 0$, there are $q, r \in R$ such that

a = bq + r with r = 0 or d(r) < d(b).

Note that Property (ii) could be restated to say: If $a \mid b$, then $d(a) \leq d(b)$;

Examples

- $R = \mathbb{Z}$ is Euclidean. Define d(r) = |r|.
- R = F[x] is Euclidean if F is a field. Define $d(f(x)) = \deg f(x)$.

■ The Gaussian integers $R_{-1} = \mathbb{Z}[\sqrt{-1}] = \{a + bi : a, b \in \mathbb{Z}\}$ is Euclidean with degree function $d(a + bi) = a^2 + b^2$.

Euclidean domains

Proposition

If R is Euclidean, then $U(R) = \{x \in R^* : d(x) = d(1)\}.$

Proof

 \subseteq ": First, we'll show that associates have the same degree. Take $a \sim b$ in R^* :

$$egin{array}{rcl} \mathsf{a} \mid b & \Longrightarrow & d(\mathsf{a}) \leq d(b) \ \mathsf{b} \mid \mathsf{a} & \Longrightarrow & d(b) \leq d(\mathsf{a}) \end{array} & \Longrightarrow & d(\mathsf{a}) = d(b). \end{array}$$

If $u \in U(R)$, then $u \sim 1$, and so d(u) = d(1). \checkmark

" \supseteq ": Suppose $x \in R^*$ and d(x) = d(1).

Then 1 = qx + r for some $q \in R$ with either r = 0 or d(r) < d(x) = d(1).

If $r \neq 0$, then $d(1) \leq d(r)$ since $1 \mid r$.

Thus, r = 0, and so qx = 1, hence $x \in U(R)$.

Euclidean domains

Proposition

If R is Euclidean, then R is a PID.

Proof

Let $I \neq 0$ be an ideal and pick some $b \in I$ with d(b) minimal.

Pick $a \in I$, and write a = bq + r with either r = 0, or d(r) < d(b).

This latter case is impossible: $r = a - bq \in I$, and by minimality, $d(b) \le d(r)$.

Therefore, r = 0, which means $a = bq \in (b)$. Since a was arbitrary, I = (b).

Exercises.

(i) The ideal $I = (3, 2 + \sqrt{-5})$ is not principal in R_{-5} .

(ii) If R is an integral domain, then I = (x, y) is not principal in R[x, y].

Corollary

The rings R_{-5} (not a PID or UFD) and R[x, y] (not a PID) are not Euclidean.

The algebraic integers are the roots of *monic* polynomials in $\mathbb{Z}[x]$. This is a subring of the algebraic numbers (roots of all polynomials in $\mathbb{Z}[x]$).

Assume $m \in \mathbb{Z}$ is square-free with $m \neq 0, 1$. Recall the quadratic field

$$\mathbb{Q}(\sqrt{m}) = \left\{ p + q\sqrt{m} \mid p, q \in \mathbb{Q} \right\}.$$

Definition

The ring R_m is the set of algebraic integers in $\mathbb{Q}(\sqrt{m})$, i.e., the subring consisting of those numbers that are roots of monic quadratic polynomials $x^2 + cx + d \in \mathbb{Z}[x]$.

Facts

- R_m is an integral domain with 1.
- Since m is square-free, $m \not\equiv 0 \pmod{4}$. For the other three cases:

$$R_m = \begin{cases} \mathbb{Z}[\sqrt{m}] = \left\{ a + b\sqrt{m} : a, b \in \mathbb{Z} \right\} & m \equiv 2 \text{ or } 3 \pmod{4} \\ \mathbb{Z}\left[\frac{1+\sqrt{m}}{2}\right] = \left\{ a + b\left(\frac{1+\sqrt{m}}{2}\right) : a, b \in \mathbb{Z} \right\} & m \equiv 1 \pmod{4} \end{cases}$$

R₋₁ is the Gaussian integers, which is a PID. (easy)
R₋₁₉ is a PID. (hard)

Definition

For $x = r + s\sqrt{m} \in \mathbb{Q}(\sqrt{m})$, define the norm of x to be

$$N(x)=(r+s\sqrt{m})(r-s\sqrt{m})=r^2-ms^2.$$

 R_m is norm-Euclidean if it is a Euclidean domain with d(x) = |N(x)|.

Note that the norm is multiplicative: N(xy) = N(x)N(y).

Exercises

Assume $m \in \mathbb{Z}$ is square-free, with $m \neq 0, 1$.

- $u \in U(R_m)$ iff |N(u)| = 1.
- If $m \ge 2$, then $U(R_m)$ is infinite.

•
$$U(R_{-1}) = \{\pm 1, \pm i\}$$
 and $U(R_{-3}) = \{\pm 1, \pm \frac{1 \pm \sqrt{-3}}{2}\}.$

• If
$$m = -2$$
 or $m < -3$, then $U(R_m) = \{\pm 1\}$.

Euclidean domains and algebraic integers

Theorem

R_m is norm-Euclidean iff

 $m \in \{-11, -7, -3, -2, -1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73\}.$

Theorem (D.A. Clark, 1994)

The ring R_{69} is a Euclidean domain that is *not* norm-Euclidean.

Let $\alpha = (1 + \sqrt{69})/2$ and c > 25 be an integer. Then the following degree function works for R_{69} , defined on the prime elements:

$$\mathcal{H}(p) = \begin{cases} |\mathcal{N}(p)| & \text{ if } p \neq 10 + 3\alpha \\ c & \text{ if } p = 10 + 3\alpha \end{cases}$$

Theorem

If m < 0 and $m \notin \{-11, -7, -3, -2, -1\}$, then R_m is not Euclidean.

Open problem

Classify which R_m 's are PIDs, and which are Euclidean.

M. Macauley (Clemson)

PIDs that are not Euclidean

Recall that R_m is norm-Euclidean iff

 $m \in \{-11, -7, -3, -2, -1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73\}.$

Corollary

If m < 0, then R_m is a PID that is not Euclidean iff $m \in \{-19, -43, -67, -163\}$.

Figure: Algebraic numbers in the complex plane. Colors indicate the coefficient of the leading term: red = 1 (algebraic integer), green = 2, blue = 3, yellow = 4. Large dots mean fewer terms and smaller coefficients. Image from Wikipedia (made by Stephen J. Brooks).

Figure: Algebraic integers in the complex plane. Each red dot is the root of a monic polynomial of degree ≤ 7 with coefficients from $\{0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5\}$. From Wikipedia.

M. Macauley (Clemson)

Summary of ring types

