Lecture 7.6: Rings of fractions

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4120, Modern Algebra

Motivation

Rings allow us to add, subtract, and multiply, but not necessarily divide.
In any ring: if $a \in R$ is not a zero divisor, then $a x=a y$ implies $x=y$. This holds even if a^{-1} doesn't exist.

In other words, by allowing "divison" by non zero-divisors, we can think of R as a subring of a bigger ring that contains a^{-1}.

If $R=\mathbb{Z}$, then this construction yields the rational numbers, \mathbb{Q}.
If R is an integral domain, then this construction yields the field of fractions of R.

Goal

Given a commutative ring R, construct a larger ring in which $a \in R$ (that's not a zero divisor) has a multiplicative inverse.

Elements of this larger ring can be thought of as fractions. It will naturally contain an isomorphic copy of R as a subring:

$$
R \hookrightarrow\left\{\frac{r}{1}: r \in R\right\}
$$

From \mathbb{Z} to \mathbb{Q}

Let's examine how one can construct the rationals from the integers.
There are many ways to write the same rational number, e.g., $\frac{1}{2}=\frac{2}{4}=\frac{3}{6}=\ldots$

Equivalence of fractions

Given $a, b, c, d \in \mathbb{Z}$, with $b, d \neq 0$,

$$
\frac{a}{b}=\frac{c}{d} \quad \text { if and only if } \quad a d=b c
$$

Addition and multiplication is defined as

$$
\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d} \quad \text { and } \quad \frac{a}{b} \times \frac{c}{d}=\frac{a c}{b d}
$$

It is not hard to show that these operations are well-defined.
The integers \mathbb{Z} can be identified with the subring $\left\{\frac{a}{1}: a \in \mathbb{Z}\right\}$ of \mathbb{Q}, and every $a \neq 0$ has a multiplicative inverse in \mathbb{Q}.

We can do a similar construction in any commutative ring!

Rings of fractions

Blanket assumptions

- R is a commutative ring.
- $D \subseteq R$ is nonempty, multiplicatively closed $\left[d_{1}, d_{2} \in D \Rightarrow d_{1} d_{2} \in D\right.$], and contains no zero divisors.

■ Consider the following set of ordered pairs:

$$
\mathcal{F}=\{(r, d) \mid r \in R, d \in D\}
$$

Define an equivalence relation: $\left(r_{1}, d_{1}\right) \sim\left(r_{2}, d_{2}\right)$ iff $r_{1} d_{2}=r_{2} d_{1}$. Denote this equvalence class containing $\left(r_{1}, d_{1}\right)$ by $\frac{r_{1}}{d_{1}}$, or r_{1} / d_{1}.

Definition

The ring of fractions of D with respect to R is the set of equivalence classes, $R_{D}:=\mathcal{F} / \sim$, where

$$
\frac{r_{1}}{d_{1}}+\frac{r_{2}}{d_{2}}:=\frac{r_{1} d_{2}+r_{2} d_{1}}{d_{1} d_{2}} \quad \text { and } \quad \frac{r_{1}}{d_{1}} \times \frac{r_{2}}{d_{2}}:=\frac{r_{1} r_{2}}{d_{1} d_{2}}
$$

Rings of fractions

Basic properties (HW)

1. These operations on $R_{D}=\mathcal{F} / \sim$ are well-defined.
2. $\left(R_{D},+\right)$ is an abelian group with identity $\frac{0}{d}$, for any $d \in D$. The additive inverse of $\frac{a}{d}$ is $\frac{-a}{d}$.
3. Multiplication is associative, distributive, and commutative.
4. R_{D} has multiplicative identity $\frac{d}{d}$, for any $d \in D$.

Examples

1. Let $R=\mathbb{Z}$ (or $R=2 \mathbb{Z}$) and $D=R-\{0\}$. Then the ring of fractions is $R_{D}=\mathbb{Q}$.
2. If R is an integral domain and $D=R-\{0\}$, then R_{D} is a field, called the field of fractions.
3. If $R=F[x]$ and $D=\left\{x^{n} \mid n \in \mathbb{Z}\right\}$, then $R_{D}=F\left[x, x^{-1}\right]$, the Laurent polynomials over F.
4. If $R=\mathbb{Z}$ and $D=5 \mathbb{Z}$, then $R_{D}=\mathbb{Z}\left[\frac{1}{5}\right]$, which are "polynomials in $\frac{1}{5}$ " over \mathbb{Z}.
5. If R is an integral domain and $D=\{d\}$, then $R_{D}=R\left[\frac{1}{d}\right]$, the set of all "polynomials in $\frac{1}{d}$ " over R.

Universal property of the ring of fractions

This says R_{D} is the "smallest" ring contaning R and all fractions of elements in D :

Theorem

Let S be any commutative ring with 1 and let $\varphi: R \hookrightarrow S$ be any ring embedding such that $\phi(d)$ is a unit in S for every $d \in D$.

Then there is a unique ring embedding $\Phi: R_{D} \rightarrow S$ such that $\Phi \circ q=\varphi$.

Proof

Define $\Phi: R_{D} \rightarrow S$ by $\Phi(r / d)=\varphi(r) \varphi(d)^{-1}$. This is well-defined and 1-1. (HW)
Uniqueness. Suppose $\Psi: R_{D} \rightarrow S$ is another embedding with $\Psi \circ q=\varphi$. Then

$$
\Psi(r / d)=\Psi\left((r / 1) \cdot(d / 1)^{-1}\right)=\Psi(r / 1) \cdot \Psi(d / 1)^{-1}=\varphi(r) \varphi(d)^{-1}=\Phi(r / d) .
$$

Thus, $\Psi=\Phi$.

