Lecture 7.7: The Chinese remainder theorem

Matthew Macauley

Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4120, Modern Algebra

Motivating example

Exercise 1

Find all solutions to the system $\left\{\begin{array}{l}2 x \equiv 5(\bmod 7) \\ 3 x \equiv 4(\bmod 9)\end{array}\right.$

Motivating example

Exercise 2

Find all solutions to the system $\left\{\begin{array}{l}x \equiv 3(\bmod 4) \\ x \equiv 0(\bmod 6)\end{array}\right.$

Number theory version

Chinese remainder theorem

Let $n_{1}, \ldots, n_{k} \in \mathbb{Z}^{+}$be pairwise co-prime (that is, $\operatorname{gcd}\left(n_{i}, n_{j}\right)=1$ for $i \neq j$). For any $a_{1}, \ldots, a_{k} \in \mathbb{Z}$, the system

$$
\left\{\begin{array}{c}
x \equiv a_{1} \quad\left(\bmod n_{1}\right) \\
\vdots \\
x \equiv a_{1} \quad\left(\bmod n_{1}\right)
\end{array}\right.
$$

has a solution $x \in \mathbb{Z}$. Moreover, all solutions are congruent modulo $N=n_{1} n_{2} \cdots n_{k}$.

This can be generalized. To see how, first recall the following operations on ideals:

1. Intersection: $I \cap J=\{r \in R \mid r \in I$ and $r \in J\}$.
2. Product: $I J=\langle a b \mid a \in I, b \in J\rangle=\left\{a_{1} b_{1}+\cdots+a_{k} b_{k} \mid a_{i} \in I, b_{j} \in J\right\} \subseteq I \cap J$.
3. Sum: $I+J=\{a+b \mid a \in I, b \in J\}$.

Example: $R=\mathbb{Z}, I=\langle 9\rangle=9 \mathbb{Z}, J=\langle 6\rangle=6 \mathbb{Z}$.

1. Intersection: $\langle 9\rangle \cap\langle 6\rangle=\langle 18\rangle \quad$ (lm)
2. Product: $\langle 9\rangle\langle 6\rangle=\langle 54\rangle \quad$ (product)
3. Sum: $\langle 9\rangle+\langle 6\rangle=\langle 3\rangle \quad$ (gcd).

Ring theory version

Note that $\operatorname{gcd}(m, n)=1$ iff $a m+b n=1$ for some $a, b \in \mathbb{Z}$.
Or equivalently, $\langle m\rangle+\langle n\rangle=\mathbb{Z}$.

Definition

Two ideals I, J of R are co-prime if $I+J=R$.

Chinese remainder theorem (2 ideals)

Let R have 1 and $I+J=R$. Then for any $r_{1}, r_{2} \in R$, the system

$$
\begin{cases}x \equiv r_{1} & (\bmod I) \\ x \equiv r_{2} & (\bmod J)\end{cases}
$$

has a solution $r \in R$. Moreover, any two solutions are congruent modulo $I \cap J$.

Recall that such a solution $r \in R$ satisfies $r-r_{1} \in I$ and $r-r_{2} \in J$.

Ring theory version

Chinese remainder theorem (2 ideals)
Let R have 1 and $I+J=R$. Then for any $r_{1}, r_{2} \in R$, the system

$$
\begin{cases}x \equiv r_{1} & (\bmod I) \\ x \equiv r_{2} & (\bmod J)\end{cases}
$$

has a solution $r \in R$. Moreover, any two solutions are congruent modulo $I \cap J$.

Proof

Write $1=a+b$, with $a \in I$ and $b \in J$, and set $r=r_{2} a+r_{1} b$.

Ring theory version

Chinese remainder theorem

Let R have 1 and I_{1}, \ldots, J_{n} be pairwise co-prime ideals. Then for any $r_{1}, \ldots, r_{n} \in R$, the system

$$
\left\{\begin{array}{c}
x \equiv r_{1} \quad\left(\bmod I_{1}\right) \\
\vdots \\
x \equiv r_{2} \quad\left(\bmod I_{n}\right)
\end{array}\right.
$$

has a solution $r \in R$. Moreover, any two solutions are congruent modulo $I_{1} \cap \cdots \cap I_{n}$.

Proof

$n=1$. For $j=2, \ldots, n$, write $1=a_{j}+b_{j}$, where $a_{j} \in I_{1}, b_{j} \in \boldsymbol{I}_{j}$. Then

$$
\begin{aligned}
1 & =\left(a_{2}+b_{2}\right)\left(a_{3}+b_{3}\right) \cdots\left(a_{n}+b_{n}\right) \\
& =a_{2}\left[\left(a_{3}+b_{3}\right) \cdots\left(a_{n}+b_{n}\right)\right]+b_{2}\left[\left(a_{3}+b_{3}\right) \cdots\left(a_{n}+b_{n}\right)\right] \in I_{1}+\prod_{j=2}^{n} l_{j}=R .
\end{aligned}
$$

Now apply the CRT for 2 ideals to the system $\left\{\begin{array}{l}x \equiv 1\left(\bmod I_{1}\right) \\ x \equiv 0\left(\bmod \prod_{j \neq 1} l_{j}\right)\end{array}\right.$
Let $s_{1} \in R$ be a solution.

Ring theory version

Chinese remainder theorem

Let R have 1 and I_{1}, \ldots, J_{n} be pairwise co-prime ideals. Then for any $r_{1}, \ldots, r_{n} \in R$, the system

$$
\left\{\begin{array}{c}
x \equiv r_{1} \quad\left(\bmod I_{1}\right) \\
\vdots \\
x \equiv r_{2} \quad\left(\bmod I_{n}\right)
\end{array}\right.
$$

has a solution $r \in R$. Moreover, any two solutions are congruent modulo $I_{1} \cap \cdots \cap I_{n}$.

Proof (cont.)

$\underline{n=k}$. For $j=1, \ldots K_{1}, \ldots, n$, write $1=a_{j}+b_{j}$, where $a_{j} \in I_{k}, b_{j} \in I_{j}$. Then

$$
1=\left(a_{2}+b_{2}\right) \cdots\left(a_{k}+b_{k}\right) \cdots\left(a_{n}+b_{n}\right) \in I_{k}+\prod_{j \neq k} I_{j}=R
$$

Now apply the CRT for 2 ideals to the system $\left\{\begin{array}{l}x \equiv 1\left(\bmod I_{k}\right) \\ x \equiv 0\left(\bmod \prod_{j \neq 1} I_{j}\right)\end{array}\right.$
Let $s_{k} \in R$ be a solution.

Ring theory version

Chinese remainder theorem

Let R have 1 and I_{1}, \ldots, J_{n} be pairwise co-prime ideals. Then for any $r_{1}, \ldots, r_{n} \in R$, the system

$$
\left\{\begin{array}{c}
x \equiv r_{1} \quad\left(\bmod I_{1}\right) \\
\vdots \\
x \equiv r_{2} \quad\left(\bmod I_{n}\right)
\end{array}\right.
$$

has a solution $r \in R$. Moreover, any two solutions are congruent modulo $I_{1} \cap \cdots \cap I_{n}$.

Proof (cont.)

By construction, $s_{k} \in\left(\bmod \prod_{j \neq k} I_{j}\right)$, and so $s_{k} \in I_{j}$ for all $j \neq k$.
We have $s_{k} \equiv 1\left(\bmod I_{k}\right)$ and $s_{k} \equiv 1(\bmod I)_{j}$ for $j \neq k$.
Set $r=r_{1} s_{1}+\cdots+r_{n} s_{n}$. It is easy to see that this works.
If $s \in R$ is another solution, then $s \equiv r_{j} \equiv r\left(\bmod l_{j}\right)$, for $j=1, \ldots, n$, and so

$$
s \equiv r \bmod \bigcap_{j=1}^{n} \iota_{j}
$$

Applications

When is \mathbb{Z}_{n} isomorphic to a product?
Let $R=\mathbb{Z}$ and $I_{j}=\left\langle m_{j}\right\rangle$, for $j=1, \ldots, n$ with $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ for $i \neq j$. Then

$$
I_{1} \cap \cdots \cap I_{n}=\left\langle m_{1} m_{2} \cdots m_{n}\right\rangle, \quad \text { and } \quad \mathbb{Z}_{m_{1} m_{2} \cdots m_{n}} \cong \mathbb{Z}_{m_{1}} \times \cdots \times \mathbb{Z}_{m_{n}} .
$$

Corollary

Factor $n=p_{1}^{d_{1}} \cdots p_{n}^{d_{n}}$ into a product of distinct primes. Then

$$
\mathbb{Z}_{n} \cong \mathbb{Z}_{p_{1} d_{1}} \times \cdots \times \mathbb{Z}_{p_{n} d_{n}}
$$

Remark

If R is a Euclidean domain, then the proof of the CRT is constructive.
Specifically, we can use the Euclidean algorithm to write

$$
c_{k} m_{k}+d_{k} \prod_{j \neq k} m_{j}=\operatorname{gcd}\left(m_{k}, \prod_{j \neq k} m_{j}\right)=1, \quad \text { where } \quad l_{j}=\left\langle m_{j}\right\rangle
$$

Then, set $s_{k}=d_{k} \prod_{j \neq k} m_{j}$, and $r=r_{1} s_{1}+\cdots+r_{n} s_{n}$ is the solution.

