Section 7: Ring theory

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4120, Modern Algebra

What is a ring?

Definition

A ring is an additive (abelian) group R with an additional binary operation (multiplication), satisfying the distributive law:

$$
x(y+z)=x y+x z \quad \text { and } \quad(y+z) x=y x+z x \quad \forall x, y, z \in R
$$

Remarks

- There need not be multiplicative inverses.
- Multiplication need not be commutative (it may happen that $x y \neq y x$).

A few more terms
If $x y=y x$ for all $x, y \in R$, then R is commutative.
If R has a multiplicative identity $1=1_{R} \neq 0$, we say that " R has identity" or "unity", or " R is a ring with 1. ."

A subring of R is a subset $S \subseteq R$ that is also a ring.

What is a ring?

Examples

1. $\mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$ are all commutative rings with 1 .
2. \mathbb{Z}_{n} is a commutative ring with 1 .
3. For any ring R with 1 , the set $M_{n}(R)$ of $n \times n$ matrices over R is a ring. It has identity $1_{M_{n}(R)}=I_{n}$ iff R has 1 .
4. For any ring R, the set of functions $F=\{f: R \rightarrow R\}$ is a ring by defining

$$
(f+g)(r)=f(r)+g(r), \quad(f g)(r)=f(r) g(r)
$$

5. The set $S=2 \mathbb{Z}$ is a subring of \mathbb{Z} but it does not have 1 .
6. $S=\left\{\left[\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right]: a \in \mathbb{R}\right\}$ is a subring of $R=M_{2}(\mathbb{R})$. However, note that

$$
1_{R}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad \text { but } \quad 1_{S}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] .
$$

7. If R is a ring and x a variable, then the set

$$
R[x]=\left\{a_{n} x^{n}+\cdots+a_{1} x+a_{0} \mid a_{i} \in R\right\}
$$

is called the polynomial ring over R.

Another example: the quaternions
Recall the (unit) quaternion group:
$Q_{8}=\left\langle i, j, k \mid i^{2}=j^{2}=k^{2}=-1, i j=k\right\rangle$.

Allowing addition makes them into a ring \mathbb{H}, called the quaternions, or Hamiltonians:

$$
\mathbb{H}=\{a+b i+c j+d k \mid a, b, c, d \in \mathbb{R}\} .
$$

The set \mathbb{H} is isomorphic to a subring of $M_{4}(\mathbb{R})$, the real-valued 4×4 matrices:

$$
\mathbb{H}=\left\{\left[\begin{array}{cccc}
a & -b & -c & -d \\
b & a & -d & c \\
c & d & a & -b \\
d & -c & b & a
\end{array}\right]: a, b, c, d \in \mathbb{R}\right\} \subseteq M_{4}(\mathbb{R}) .
$$

Formally, we have an embedding $\phi: \mathbb{H} \hookrightarrow M_{4}(\mathbb{R})$ where

$$
\phi(i)=\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right], \quad \phi(j)=\left[\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right], \quad \phi(k)=\left[\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] .
$$

We say that \mathbb{H} is represented by a set of matrices.

Units and zero divisors

Definition

Let R be a ring with 1. A unit is any $x \in R$ that has a multiplicative inverse. Let $U(R)$ be the set (a multiplicative group) of units of R.

An element $x \in R$ is a left zero divisor if $x y=0$ for some $y \neq 0$. (Right zero divisors are defined analogously.)

Examples

1. Let $R=\mathbb{Z}$. The units are $U(R)=\{-1,1\}$. There are no (nonzero) zero divisors.
2. Let $R=\mathbb{Z}_{10}$. Then 7 is a unit (and $7^{-1}=3$) because $7 \cdot 3=1$. However, 2 is not a unit.
3. Let $R=\mathbb{Z}_{n}$. A nonzero $k \in \mathbb{Z}_{n}$ is a unit if $\operatorname{gcd}(n, k)=1$, and a zero divisor if $\operatorname{gcd}(n, k) \geq 2$.
4. The ring $R=M_{2}(\mathbb{R})$ has zero divisors, such as:

$$
\left[\begin{array}{cc}
1 & -2 \\
-2 & 4
\end{array}\right]\left[\begin{array}{ll}
6 & 2 \\
3 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

The groups of units of $M_{2}(\mathbb{R})$ are the invertible matrices.

Group rings

Let R be a commutative ring (usually, \mathbb{Z}, \mathbb{R}, or \mathbb{C}) and G a finite (multiplicative) group. We can define the group ring $R G$ as

$$
R G:=\left\{a_{1} g_{1}+\cdots+a_{n} g_{n} \mid a_{i} \in R, g_{i} \in G\right\},
$$

where multiplication is defined in the "obvious" way.
For example, let $R=\mathbb{Z}$ and $G=D_{4}=\left\langle r, f \mid r^{4}=f^{2}=r f r f=1\right\rangle$, and consider the elements $x=r+r^{2}-3 f$ and $y=-5 r^{2}+r f$ in $\mathbb{Z} D_{4}$. Their sum is

$$
x+y=r-4 r^{2}-3 f+r f,
$$

and their product is

$$
\begin{aligned}
x y & =\left(r+r^{2}-3 f\right)\left(-5 r^{2}+r f\right)=r\left(-5 r^{2}+r f\right)+r^{2}\left(-5 r^{2}+r f\right)-3 f\left(-5 r^{2}+r f\right) \\
& =-5 r^{3}+r^{2} f-5 r^{4}+r^{3} f+15 f r^{2}-3 f r f=-5-8 r^{3}+16 r^{2} f+r^{3} f .
\end{aligned}
$$

Remarks

- The (real) Hamiltonians \mathbb{H} is not the same ring as $\mathbb{R} Q_{8}$.
- If $g \in G$ has finite order $|g|=k>1$, then $R G$ always has zero divisors:

$$
(1-g)\left(1+g+\cdots+g^{k-1}\right)=1-g^{k}=1-1=0 .
$$

- $R G$ contains a subring isomorphic to R, and the group of units $U(R G)$ contains a subgroup isomorphic to G.

Types of rings

Definition

If all nonzero elements of R have a multiplicative inverse, then R is a division ring. (Think: "field without commutativity".)

An integral domain is a commutative ring with 1 and with no (nonzero) zero divisors. (Think: "field without inverses".)

A field is just a commutative division ring. Moreover:
fields \subsetneq division rings

$$
\text { fields } \subsetneq \text { integral domains } \subsetneq \text { all rings }
$$

Examples

■ Rings that are not integral domains: \mathbb{Z}_{n} (composite n), $2 \mathbb{Z}, M_{n}(\mathbb{R}), \mathbb{Z} \times \mathbb{Z}, \mathbb{H}$.

- Integral domains that are not fields (or even division rings): $\mathbb{Z}, \mathbb{Z}[x], \mathbb{R}[x], \mathbb{R}[[x]]$ (formal power series).
- Division ring but not a field: \mathbb{H}.

Cancellation

When doing basic algebra, we often take for granted basic properties such as cancellation: $a x=a y \Longrightarrow x=y$. However, this need not hold in all rings!

Examples where cancellation fails

■ In \mathbb{Z}_{6}, note that $2=2 \cdot 1=2 \cdot 4$, but $1 \neq 4$.
$\square \operatorname{In} M_{2}(\mathbb{R})$, note that $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}4 & 1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right]$.

However, everything works fine as long as there aren't any (nonzero) zero divisors.

Proposition

Let R be an integral domain and $a \neq 0$. If $a x=a y$ for some $x, y \in R$, then $x=y$.

Proof

If $a x=a y$, then $a x-a y=a(x-y)=0$.
Since $a \neq 0$ and R has no (nonzero) zero divisors, then $x-y=0$.

Finite integral domains

Lemma (HW)

If R is an integral domain and $0 \neq a \in R$ and $k \in \mathbb{N}$, then $a^{k} \neq 0$.

Theorem

Every finite integral domain is a field.

Proof

Suppose R is a finite integral domain and $0 \neq a \in R$. It suffices to show that a has a multiplicative inverse.

Consider the infinite sequence $a, a^{2}, a^{3}, a^{4}, \ldots$, which must repeat.
Find $i>j$ with $a^{i}=a^{j}$, which means that

$$
0=a^{i}-a^{j}=a^{j}\left(a^{i-j}-1\right)
$$

Since R is an integral domain and $a^{j} \neq 0$, then $a^{i-j}=1$.
Thus, $a \cdot a^{i-j-1}=1$.

Ideals

In the theory of groups, we can quotient out by a subgroup if and only if it is a normal subgroup. The analogue of this for rings are (two-sided) ideals.

Definition

A subring $I \subseteq R$ is a left ideal if

$$
r x \in I \quad \text { for all } r \in R \text { and } x \in I
$$

Right ideals, and two-sided ideals are defined similarly.

If R is commutative, then all left (or right) ideals are two-sided.
We use the term ideal and two-sided ideal synonymously, and write $I \unlhd R$.

Examples

- $n \mathbb{Z} \unlhd \mathbb{Z}$.
- If $R=M_{2}(\mathbb{R})$, then $I=\left\{\left[\begin{array}{ll}a & 0 \\ c & 0\end{array}\right]: a, c \in \mathbb{R}\right\}$ is a left, but not a right ideal of R.
- The set $\operatorname{Sym}_{n}(\mathbb{R})$ of symmetric $n \times n$ matrices is a subring of $M_{n}(\mathbb{R})$, but not an ideal.

Ideals

Remark

If an ideal I of R contains 1 , then $I=R$.

Proof

Suppose $1 \in I$, and take an arbitrary $r \in R$.
Then $r 1 \in I$, and so $r 1=r \in I$. Therefore, $I=R$.

It is not hard to modify the above result to show that if I contains any unit, then $I=R$. HW)

Let's compare the concept of a normal subgroup to that of an ideal:

- normal subgroups are characterized by being invariant under conjugation:

$$
H \leq G \text { is normal iff } \mathrm{ghg}^{-1} \in H \text { for all } g \in G, h \in H .
$$

- (left) ideals of rings are characterized by being invariant under (left) multiplication:

$$
I \subseteq R \text { is a (left) ideal iff } r i \in I \text { for all } r \in R, i \in I
$$

Ideals generated by sets

Definition

The left ideal generated by a set $X \subset R$ is defined as:

$$
(X):=\bigcap\{I: I \text { is a left ideal s.t. } X \subseteq I \subseteq R\} .
$$

This is the smallest left ideal containing X.
There are analogous definitions by replacing "left" with "right" or "two-sided".

Recall the two ways to define the subgroup $\langle X\rangle$ generated by a subset $X \subseteq G$:

- "Bottom up": As the set of all finite products of elements in X;
- "Top down": As the intersection of all subgroups containing X.

Proposition (HW)

Let R be a ring with unity. The (left, right, two-sided) ideal generated by $X \subseteq R$ is:

- Left: $\left\{r_{1} x_{1}+\cdots+r_{n} x_{n}: n \in \mathbb{N}, r_{i} \in R, x_{i} \in X\right\}$,
- Right: $\left\{x_{1} r_{1}+\cdots+x_{n} r_{n}: n \in \mathbb{N}, r_{i} \in R, x_{i} \in X\right\}$,
- Two-sided: $\left\{r_{1} x_{1} s_{1}+\cdots+r_{n} x_{n} s_{n}: n \in \mathbb{N}, r_{i}, s_{i} \in R, x_{i} \in X\right\}$.

Ideals and quotients

Since an ideal I of R is an additive subgroup (and hence normal), then:
$\square R / I=\{x+I \mid x \in R\}$ is the set of cosets of I in R;

- R / I is a quotient group; with the binary operation (addition) defined as

$$
(x+I)+(y+I):=x+y+I
$$

It turns out that if I is also a two-sided ideal, then we can make R / I into a ring.

Proposition

If $I \subseteq R$ is a (two-sided) ideal, then R / I is a ring (called a quotient ring), where multiplication is defined by

$$
(x+I)(y+I):=x y+I
$$

Proof

We need to show this is well-defined. Suppose $x+I=r+I$ and $y+I=s+I$. This means that $x-r \in I$ and $y-s \in I$.

It suffices to show that $x y+I=r s+I$, or equivalently, $x y-r s \in I$:

$$
x y-r s=x y-r y+r y-r s=(x-r) y+r(y-s) \in I
$$

Finite fields

We've already seen that \mathbb{Z}_{p} is a field if p is prime, and that finite integral domains are fields. But what do these "other" finite fields look like?

Let $R=\mathbb{Z}_{2}[x]$ be the polynomial ring over the field \mathbb{Z}_{2}. (Note: we can ignore all negative signs.)

The polynomial $f(x)=x^{2}+x+1$ is irreducible over \mathbb{Z}_{2} because it does not have a root. (Note that $f(0)=f(1)=1 \neq 0$.)

Consider the ideal $I=\left(x^{2}+x+1\right)$, the set of multiples of $x^{2}+x+1$.
In the quotient ring R / I, we have the relation $x^{2}+x+1=0$, or equivalently, $x^{2}=-x-1=x+1$.

The quotient has only 4 elements:

$$
0+I, \quad 1+I, \quad x+I, \quad(x+1)+I
$$

As with the quotient group (or ring) $\mathbb{Z} / n \mathbb{Z}$, we usually drop the " l ", and just write

$$
R / I=\mathbb{Z}_{2}[x] /\left(x^{2}+x+1\right) \cong\{0,1, x, x+1\}
$$

It is easy to check that this is a field!

Finite fields

Here is a Cayley diagram, and the operation tables for $R / I=\mathbb{Z}_{2}[x] /\left(x^{2}+x+1\right)$:

	0	1	x	$x+1$
0	0	1	x	$x+1$
1	1	0	$x+1$	x
x	x	$x+1$	0	1
$x+1$	$x+1$	x	1	0

\times	1	x	$x+1$
1	1	x	$x+1$
x	x	$x+1$	1
$x+1$	$x+1$	1	x

Theorem

There exists a finite field \mathbb{F}_{q} of order q, which is unique up to isomorphism, iff $q=p^{n}$ for some prime p. If $n>1$, then this field is isomorphic to the quotient ring

$$
\mathbb{Z}_{p}[x] /(f)
$$

where f is any irreducible polynomial of degree n.

Much of the error correcting techniques in coding theory are built using mathematics over $\mathbb{F}_{2^{8}}=\mathbb{F}_{256}$. This is what allows your CD to play despite scratches.

Motivation (spoilers!)

Many of the big ideas from group homomorphisms carry over to ring homomorphisms.

Group theory

- The quotient group G / N exists iff N is a normal subgroup.
- A homomorphism is a structure-preserving map: $f(x * y)=f(x) * f(y)$.
- The kernel of a homomorphism is a normal subgroup: $\operatorname{Ker} \phi \unlhd G$.
- For every normal subgroup $N \unlhd G$, there is a natural quotient homomorphism $\phi: G \rightarrow G / N, \quad \phi(g)=g N$.
- There are four standard isomorphism theorems for groups.

Ring theory

- The quotient ring R / I exists iff I is a two-sided ideal.
- A homomorphism is a structure-preserving map: $f(x+y)=f(x)+f(y)$ and $f(x y)=f(x) f(y)$.
- The kernel of a homomorphism is a two-sided ideal: $\operatorname{Ker} \phi \unlhd R$.

■ For every two-sided ideal $I \unlhd R$, there is a natural quotient homomorphism $\phi: R \rightarrow R / I, \phi(r)=r+I$.

- There are four standard isomorphism theorems for rings.

Ring homomorphisms

Definition

A ring homomorphism is a function $f: R \rightarrow S$ satisfying

$$
f(x+y)=f(x)+f(y) \quad \text { and } \quad f(x y)=f(x) f(y) \quad \text { for all } x, y \in R
$$

A ring isomorphism is a homomorphism that is bijective.
The kernel $f: R \rightarrow S$ is the set $\operatorname{Ker} f:=\{x \in R: f(x)=0\}$.

Examples

1. The function $\phi: \mathbb{Z} \rightarrow \mathbb{Z}_{n}$ that sends $k \mapsto k(\bmod n)$ is a ring homomorphism with $\operatorname{Ker}(\phi)=n \mathbb{Z}$.
2. For a fixed real number $\alpha \in \mathbb{R}$, the "evaluation function"

$$
\phi: \mathbb{R}[x] \longrightarrow \mathbb{R}, \quad \phi: p(x) \longmapsto p(\alpha)
$$

is a homomorphism. The kernel consists of all polynomials that have α as a root.
3. The following is a homomorphism, for the ideal $I=\left(x^{2}+x+1\right)$ in $\mathbb{Z}_{2}[x]$:

$$
\phi: \mathbb{Z}_{2}[x] \longrightarrow \mathbb{Z}_{2}[x] / I, \quad f(x) \longmapsto f(x)+I
$$

The isomorphism theorems for rings

Fundamental homomorphism theorem

If $\phi: R \rightarrow S$ is a ring homomorphism, then $\operatorname{Ker} \phi$ is an ideal and $\operatorname{Im}(\phi) \cong R / \operatorname{Ker}(\phi)$.

Proof (HW)

The statement holds for the underlying additive group R. Thus, it remains to show that $\operatorname{Ker} \phi$ is a (two-sided) ideal, and the following map is a ring homomorphism:

$$
g: R / I \longrightarrow \operatorname{Im} \phi, \quad \quad g(x+I)=\phi(x)
$$

The second isomorphism theorem for rings

Suppose S is a subring and I an ideal of R. Then
(i) The sum $S+I=\{s+i \mid s \in S, i \in I\}$ is a subring of R and the intersection $S \cap I$ is an ideal of S.
(ii) The following quotient rings are isomorphic:

$$
(S+I) / I \cong S /(S \cap I)
$$

Proof (sketch)

$S+I$ is an additive subgroup, and it's closed under multiplication because

$$
s_{1}, s_{2} \in S, i_{1}, i_{2} \in I \quad \Longrightarrow \quad\left(s_{1}+i_{1}\right)\left(s_{2}+i_{2}\right)=\underbrace{s_{1} s_{2}}_{\in S}+\underbrace{s_{1} i_{2}+i_{1} s_{2}+i_{1} i_{2}}_{\in I} \in S+I
$$

Showing $S \cap I$ is an ideal of S is straightforward (homework exercise).
We already know that $(S+I) / I \cong S /(S \cap I)$ as additive groups.
One explicit isomorphism is $\phi: s+(S \cap I) \mapsto s+I$. It is easy to check that $\phi: 1 \mapsto 1$ and ϕ preserves products.

The third isomorphism theorem for rings

Freshman theorem

Suppose R is a ring with ideals $J \subseteq I$. Then I / J is an ideal of R / J and

$$
(R / J) /(I / J) \cong R / I
$$

(Thanks to Zach Teitler of Boise State for the concept and graphic!)

The fourth isomorphism theorem for rings

Correspondence theorem

Let I be an ideal of R. There is a bijective correspondence between subrings (\& ideals) of R / I and subrings (\& ideals) of R that contain I. In particular, every ideal of R / I has the form J / I, for some ideal J satisfying $I \subseteq J \subseteq R$.

subrings \& ideals that contain I

subrings \& ideals of R / I

Maximal ideals

Definition

An ideal I of R is maximal if $I \neq R$ and if $I \subseteq J \subseteq R$ holds for some ideal J, then $J=I$ or $J=R$.

A ring R is simple if its only (two-sided) ideals are 0 and R.

Examples

1. If $n \neq 0$, then the ideal $M=(n)$ of $R=\mathbb{Z}$ is maximal if and only if n is prime.
2. Let $R=\mathbb{Q}[x]$ be the set of all polynomials over \mathbb{Q}. The ideal $M=(x)$ consisting of all polynomials with constant term zero is a maximal ideal.

Elements in the quotient ring $\mathbb{Q}[x] /(x)$ have the form $f(x)+M=a_{0}+M$.
3. Let $R=\mathbb{Z}_{2}[x]$, the polynomials over \mathbb{Z}_{2}. The ideal $M=\left(x^{2}+x+1\right)$ is maximal, and $R / M \cong \mathbb{F}_{4}$, the (unique) finite field of order 4.

In all three examples above, the quotient R / M is a field.

Maximal ideals

Theorem

Let R be a commutative ring with 1 . The following are equivalent for an ideal $I \subseteq R$.
(i) I is a maximal ideal;
(ii) R / l is simple;
(iii) R / I is a field.

Proof

The equivalence $(\mathrm{i}) \Leftrightarrow(\mathrm{ii})$ is immediate from the Correspondence Theorem.
For (ii) \Leftrightarrow (iii), we'll show that an arbitrary ring R is simple iff R is a field.
$" \Rightarrow$ ": Assume R is simple. Then $(a)=R$ for any nonzero $a \in R$.
Thus, $1 \in(a)$, so $1=b a$ for some $b \in R$, so $a \in U(R)$ and R is a field. \checkmark
" \Leftarrow ": Let $I \subseteq R$ be a nonzero ideal of a field R. Take any nonzero $a \in I$.
Then $a^{-1} a \in I$, and so $1 \in I$, which means $I=R$. \checkmark

Prime ideals

Definition

Let R be a commutative ring. An ideal $P \subset R$ is prime if $a b \in P$ implies either $a \in P$ or $b \in P$.

Note that $p \in \mathbb{N}$ is a prime number iff $p=a b$ implies either $a=p$ or $b=p$.

Examples

1. The ideal (n) of \mathbb{Z} is a prime ideal iff n is a prime number (possibly $n=0$).
2. In the polynomial ring $\mathbb{Z}[x]$, the ideal $I=(2, x)$ is a prime ideal. It consists of all polynomials whose constant coefficient is even.

Theorem

An ideal $P \subseteq R$ is prime iff R / P is an integral domain.
The proof is straightforward (HW). Since fields are integral domains, the following is immediate:

Corollary

In a commutative ring, every maximal ideal is prime.

Divisibility and factorization

A ring is in some sense, a generalization of the familiar number systems like \mathbb{Z}, \mathbb{R}, and \mathbb{C}, where we are allowed to add, subtract, and multiply.

Two key properties about these structures are:

- multiplication is commutative,
- there are no (nonzero) zero divisors.

Blanket assumption

Throughout this lecture, unless explicitly mentioned otherwise, R is assumed to be an integral domain, and we will define $R^{*}:=R \backslash\{0\}$.

The integers have several basic properties that we usually take for granted:
■ every nonzero number can be factored uniquely into primes;

- any two numbers have a unique greatest common divisor and least common multiple;
- there is a Euclidean algorithm, which can find the gcd of two numbers.

Surprisingly, these need not always hold in integrals domains! We would like to understand this better.

Divisibility

Definition

If $a, b \in R$, say that a divides b, or b is a multiple of a if $b=a c$ for some $c \in R$. We write $a \mid b$.

If $a \mid b$ and $b \mid a$, then a and b are associates, written $a \sim b$.

Examples

- In $\mathbb{Z}: n$ and $-n$ are associates.

■ In $\mathbb{R}[x]: f(x)$ and $c \cdot f(x)$ are associates for any $c \neq 0$.

- The only associate of 0 is itself.
- The associates of 1 are the units of R.

Proposition (HW)

Two elements $a, b \in R$ are associates if and only if $a=b u$ for some unit $u \in U(R)$.

This defines an equivalence relation on R, and partitions R into equivalence classes.

Irreducibles and primes
Note that units divide everything: if $b \in R$ and $u \in U(R)$, then $u \mid b$.

Definition

If $b \in R$ is not a unit, and the only divisors of b are units and associates of b, then b is irreducible.

An element $p \in R$ is prime if p is not a unit, and $p \mid a b$ implies $p \mid a$ or $p \mid b$.

Proposition

If $0 \neq p \in R$ is prime, then p is irreducible.

Proof

Suppose p is prime but not irreducible. Then $p=a b$ with $a, b \notin U(R)$.
Then (wlog) $p \mid a$, so $a=p c$ for some $c \in R$. Now,

$$
p=a b=(p c) b=p(c b)
$$

This means that $c b=1$, and thus $b \in U(R)$, a contradiction.

Irreducibles and primes

Caveat: Irreducible \nRightarrow prime

Consider the ring $R_{-5}:=\{a+b \sqrt{-5}: a, b \in \mathbb{Z}\}$.

$$
3 \mid(2+\sqrt{-5})(2-\sqrt{-5})=9=3 \cdot 3,
$$

but $3 \nmid 2+\sqrt{-5}$ and $3 \nmid 2-\sqrt{-5}$.
Thus, 3 is irreducible in R_{-5} but not prime.

When irreducibles fail to be prime, we can lose nice properties like unique factorization.

Things can get really bad: not even the lengths of factorizations into irreducibles need be the same!

For example, consider the ring $R=\mathbb{Z}\left[x^{2}, x^{3}\right]$. Then

$$
x^{6}=x^{2} \cdot x^{2} \cdot x^{2}=x^{3} \cdot x^{3} .
$$

The element $x^{2} \in R$ is not prime because $x^{2} \mid x^{3} \cdot x^{3}$ yet $x^{2} \nmid x^{3}$ in R (note: $x \notin R$).

Principal ideal domains

Fortunately, there is a type of ring where such "bad things" don't happen.

Definition

An ideal I generated by a single element $a \in R$ is called a principal ideal. We denote this by $I=(a)$.

If every ideal of R is principal, then R is a principal ideal domain (PID).

Examples

The following are all PIDs (stated without proof):

- The ring of integers, \mathbb{Z}.
- Any field F.
- The polynomial ring $F[x]$ over a field.

As we will see shortly, PIDs are "nice" rings. Here are some properties they enjoy:
■ pairs of elements have a "greatest common divisor" \& "least common multiple";

- irreducible \Rightarrow prime;

■ Every element factors uniquely into primes.

Greatest common divisors \& least common multiples

Proposition

If $I \subseteq \mathbb{Z}$ is an ideal, and $a \in I$ is its smallest positive element, then $I=(a)$.

Proof

Pick any positive $b \in I$. Write $b=a q+r$, for $q, r \in \mathbb{Z}$ and $0 \leq r<a$.
Then $r=b-a q \in I$, so $r=0$. Therefore, $b=q a \in(a)$.

Definition

A common divisor of $a, b \in R$ is an element $d \in R$ such that $d \mid a$ and $d \mid b$.
Moreover, d is a greatest common divisor (GCD) if $c \mid d$ for all other common divisors c of a and b.

A common multiple of $a, b \in R$ is an element $m \in R$ such that $a \mid m$ and $b \mid m$.
Moreover, m is a least common multiple (LCM) if $m \mid n$ for all other common multiples n of a and b.

Nice properties of PIDs

Proposition

If R is a PID, then any $a, b \in R^{*}$ have a GCD, $d=\operatorname{gcd}(a, b)$.
It is unique up to associates, and can be written as $d=x a+y b$ for some $x, y \in R$.

Proof

Existence. The ideal generated by a and b is

$$
I=(a, b)=\{u a+v b: u, v \in R\} .
$$

Since R is a PID, we can write $I=(d)$ for some $d \in I$, and so $d=x a+y b$.
Since $a, b \in(d)$, both $d \mid a$ and $d \mid b$ hold.
If c is a divisor of $a \& b$, then $c \mid x a+y b=d$, so d is a GCD for a and b. \checkmark
Uniqueness. If d^{\prime} is another GCD, then $d \mid d^{\prime}$ and $d^{\prime} \mid d$, so $d \sim d^{\prime} . \checkmark$

Nice properties of PIDs

Corollary

If R is a PID, then every irreducible element is prime.

Proof

Let $p \in R$ be irreducible and suppose $p \mid a b$ for some $a, b \in R$.

If $p \nmid a$, then $\operatorname{gcd}(p, a)=1$, so we may write $1=x a+y p$ for some $x, y \in R$. Thus

$$
b=(x a+y p) b=x(a b)+(y b) p
$$

Since $p \mid x(a b)$ and $p \mid(y b) p$, then $p \mid x(a b)+(y b) p=b$.

Not surprisingly, least common multiples also have a nice characterization in PIDs.

Proposition (HW)

If R is a PID, then any $a, b \in R^{*}$ have an LCM, $m=\operatorname{Icm}(a, b)$.
It is unique up to associates, and can be characterized as a generator of the ideal $I:=(a) \cap(b)$.

Unique factorization domains

Definition

An integral domain is a unique factorization domain (UFD) if:
(i) Every nonzero element is a product of irreducible elements;
(ii) Every irreducible element is prime.

Examples

1. \mathbb{Z} is a UFD: Every integer $n \in \mathbb{Z}$ can be uniquely factored as a product of irreducibles (primes):

$$
n=p_{1}^{d_{1}} p_{2}^{d_{2}} \cdots p_{k}^{d_{k}} .
$$

This is the fundamental theorem of arithmetic.
2. The ring $\mathbb{Z}[x]$ is a UFD, because every polynomial can be factored into irreducibles. But it is not a PID because the following ideal is not principal:

$$
(2, x)=\{f(x): \text { the constant term is even }\}
$$

3. The ring R_{-5} is not a UFD because $9=3 \cdot 3=(2+\sqrt{-5})(2-\sqrt{-5})$.
4. We've shown that (ii) holds for PIDs. Next, we will see that (i) holds as well.

Unique factorization domains

Theorem

If R is a PID, then R is a UFD.

Proof

We need to show Condition (i) holds: every element is a product of irreducibles. A ring is Noetherian if every ascending chain of ideals

$$
I_{1} \subseteq I_{2} \subseteq I_{3} \subseteq \cdots
$$

stabilizes, meaning that $I_{k}=I_{k+1}=I_{k+2}=\cdots$ holds for some k.
Suppose R is a PID. It is not hard to show that R is Noetherian (HW). Define

$$
X=\left\{a \in R^{*} \backslash U(R): \text { a can't be written as a product of irreducibles }\right\} .
$$

If $X \neq \emptyset$, then pick $a_{1} \in X$. Factor this as $a_{1}=a_{2} b$, where $a_{2} \in X$ and $b \notin U(R)$. Then $\left(a_{1}\right) \subsetneq\left(a_{2}\right) \subsetneq R$, and repeat this process. We get an ascending chain

$$
\left(a_{1}\right) \subsetneq\left(a_{2}\right) \subsetneq\left(a_{3}\right) \subsetneq \cdots
$$

that does not stabilize. This is impossible in a PID, so $X=\emptyset$.

Summary of ring types

The Euclidean algorithm

Around 300 B.C., Euclid wrote his famous book, the Elements, in which he described what is now known as the Euclidean algorithm:

Proposition VII. 2 (Euclid's Elements)

Given two numbers not prime to one another, to find their greatest common measure.

The algorithm works due to two key observations:

- If $a \mid b$, then $\operatorname{gcd}(a, b)=a$;
- If $a=b q+r$, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.

This is best seen by an example: Let $a=654$ and $b=360$.

$$
\begin{array}{ll}
654=360 \cdot 1+294 & \operatorname{gcd}(654,360)=\operatorname{gcd}(360,294) \\
360=294 \cdot 1+66 & \operatorname{gcd}(360,294)=\operatorname{gcd}(294,66) \\
294=66 \cdot 4+30 & \operatorname{gcd}(294,66)=\operatorname{gcd}(66,30) \\
66=30 \cdot 2+6 & \operatorname{gcd}(66,30)=\operatorname{gcd}(30,6) \\
30=6 \cdot 5 & \operatorname{gcd}(30,6)=6 .
\end{array}
$$

We conclude that $\operatorname{gcd}(654,360)=6$.

Euclidean domains

Loosely speaking, a Euclidean domain is any ring for which the Euclidean algorithm still works.

Definition

An integral domain R is Euclidean if it has a degree function $d: R^{*} \rightarrow \mathbb{Z}$ satisfying:
(i) non-negativity: $d(r) \geq 0 \quad \forall r \in R^{*}$.
(ii) monotonicity: $d(a) \leq d(a b)$ for all $a, b \in R^{*}$.
(iii) division-with-remainder property: For all $a, b \in R, b \neq 0$, there are $q, r \in R$ such that

$$
a=b q+r \quad \text { with } \quad r=0 \quad \text { or } \quad d(r)<d(b)
$$

Note that Property (ii) could be restated to say: If $a \mid b$, then $d(a) \leq d(b)$;

Examples

■ $R=\mathbb{Z}$ is Euclidean. Define $d(r)=|r|$.

- $R=F[x]$ is Euclidean if F is a field. Define $d(f(x))=\operatorname{deg} f(x)$.
- The Gaussian integers $R_{-1}=\mathbb{Z}[\sqrt{-1}]=\{a+b i: a, b \in \mathbb{Z}\}$ is Euclidean with degree function $d(a+b i)=a^{2}+b^{2}$.

Euclidean domains

Proposition

If R is Euclidean, then $U(R)=\left\{x \in R^{*}: d(x)=d(1)\right\}$.

Proof

\subseteq ": First, we'll show that associates have the same degree. Take $a \sim b$ in R^{*} :

$$
\begin{aligned}
& a \mid b \quad \Longrightarrow d(a) \leq d(b) \\
& b \mid a \quad \Longrightarrow \quad d(b) \leq d(a)
\end{aligned} \quad \Longrightarrow \quad d(a)=d(b)
$$

If $u \in U(R)$, then $u \sim 1$, and so $d(u)=d(1) . \checkmark$
" \supseteq ": Suppose $x \in R^{*}$ and $d(x)=d(1)$.
Then $1=q x+r$ for some $q \in R$ with either $r=0$ or $d(r)<d(x)=d(1)$.
If $r \neq 0$, then $d(1) \leq d(r)$ since $1 \mid r$.
Thus, $r=0$, and so $q x=1$, hence $x \in U(R)$.

Euclidean domains

Proposition

If R is Euclidean, then R is a PID.

Proof

Let $I \neq 0$ be an ideal and pick some $b \in I$ with $d(b)$ minimal.

Pick $a \in I$, and write $a=b q+r$ with either $r=0$, or $d(r)<d(b)$.
This latter case is impossible: $r=a-b q \in I$, and by minimality, $d(b) \leq d(r)$.
Therefore, $r=0$, which means $a=b q \in(b)$. Since a was arbitrary, $I=(b)$.

Exercises.

(i) The ideal $I=(3,2+\sqrt{-5})$ is not principal in R_{-5}.
(ii) If R is an integral domain, then $I=(x, y)$ is not principal in $R[x, y]$.

Corollary

The rings R_{-5} (not a PID or UFD) and $R[x, y]$ (not a PID) are not Euclidean.

Algebraic integers

The algebraic integers are the roots of monic polynomials in $\mathbb{Z}[x]$. This is a subring of the algebraic numbers (roots of all polynomials in $\mathbb{Z}[x]$).

Assume $m \in \mathbb{Z}$ is square-free with $m \neq 0,1$. Recall the quadratic field

$$
\mathbb{Q}(\sqrt{m})=\{p+q \sqrt{m} \mid p, q \in \mathbb{Q}\} .
$$

Definition

The ring R_{m} is the set of algebraic integers in $\mathbb{Q}(\sqrt{m})$, i.e., the subring consisting of those numbers that are roots of monic quadratic polynomials $x^{2}+c x+d \in \mathbb{Z}[x]$.

Facts

- R_{m} is an integral domain with 1.
- Since m is square-free, $m \not \equiv 0(\bmod 4)$. For the other three cases:

$$
R_{m}= \begin{cases}\mathbb{Z}[\sqrt{m}]=\{a+b \sqrt{m}: a, b \in \mathbb{Z}\} & m \equiv 2 \text { or } 3 \quad(\bmod 4) \\ \mathbb{Z}\left[\frac{1+\sqrt{m}}{2}\right]=\left\{a+b\left(\frac{1+\sqrt{m}}{2}\right): a, b \in \mathbb{Z}\right\} & m \equiv 1 \quad(\bmod 4)\end{cases}
$$

- R_{-1} is the Gaussian integers, which is a PID. (easy)
- R_{-19} is a PID. (hard)

Algebraic integers

Definition

For $x=r+s \sqrt{m} \in \mathbb{Q}(\sqrt{m})$, define the norm of x to be

$$
N(x)=(r+s \sqrt{m})(r-s \sqrt{m})=r^{2}-m s^{2} .
$$

R_{m} is norm-Euclidean if it is a Euclidean domain with $d(x)=|N(x)|$.

Note that the norm is multiplicative: $N(x y)=N(x) N(y)$.

Exercises

Assume $m \in \mathbb{Z}$ is square-free, with $m \neq 0,1$.
■ $u \in U\left(R_{m}\right)$ iff $|N(u)|=1$.

- If $m \geq 2$, then $U\left(R_{m}\right)$ is infinite.
- $U\left(R_{-1}\right)=\{ \pm 1, \pm i\}$ and $U\left(R_{-3}\right)=\left\{ \pm 1, \pm \frac{1 \pm \sqrt{-3}}{2}\right\}$.
- If $m=-2$ or $m<-3$, then $U\left(R_{m}\right)=\{ \pm 1\}$.

Euclidean domains and algebraic integers

Theorem

R_{m} is norm-Euclidean iff

$$
m \in\{-11,-7,-3,-2,-1,2,3,5,6,7,11,13,17,19,21,29,33,37,41,57,73\}
$$

Theorem (D.A. Clark, 1994)

The ring R_{69} is a Euclidean domain that is not norm-Euclidean.

Let $\alpha=(1+\sqrt{69}) / 2$ and $c>25$ be an integer. Then the following degree function works for R_{69}, defined on the prime elements:

$$
d(p)=\left\{\begin{array}{cl}
|N(p)| & \text { if } p \neq 10+3 \alpha \\
c & \text { if } p=10+3 \alpha
\end{array}\right.
$$

Theorem

If $m<0$ and $m \notin\{-11,-7,-3,-2,-1\}$, then R_{m} is not Euclidean.

Open problem

Classify which R_{m} 's are PIDs, and which are Euclidean.

PIDs that are not Euclidean

Theorem

If $m<0$, then R_{m} is a PID iff

$$
m \in\{\underbrace{-1,-2,-3,-7,-11}_{\text {Euclidean }},-19,-43,-67,-163\} .
$$

Recall that R_{m} is norm-Euclidean iff

$$
m \in\{-11,-7,-3,-2,-1,2,3,5,6,7,11,13,17,19,21,29,33,37,41,57,73\} .
$$

Corollary

If $m<0$, then R_{m} is a PID that is not Euclidean iff $m \in\{-19,-43,-67,-163\}$.

Algebraic integers

Figure: Algebraic numbers in the complex plane. Colors indicate the coefficient of the leading term: red $=1$ (algebraic integer), green $=2$, blue $=3$, yellow $=4$. Large dots mean fewer terms and smaller coefficients. Image from Wikipedia (made by Stephen J. Brooks).

Algebraic integers

i

Figure: Algebraic integers in the complex plane. Each red dot is the root of a monic polynomial of degree ≤ 7 with coefficients from $\{0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5\}$. From Wikipedia.

Summary of ring types

