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What is a ring?
A group is a set with a binary operation, satisfying a few basic properties.

Many algebraic structures (numbers, matrices, functions) have two binary operations.

Definition
A ring is an additive (abelian) group R with an additional binary operation (multiplication),
satisfying the distributive law:

x(y + z) = xy + xz and (y + z)x = yx + zx ∀x , y , z ∈ R .

Remarks
There need not be multiplicative inverses.

Multiplication need not be commutative (it may happen that xy 6= yx).

A few more definitions
If xy = yx for all x , y ∈ R, then R is commutative.

If R has a multiplicative identity 1 = 1R 6= 0, we say that “R has identity” or “unity”, or “R
is a ring with 1.”

A subring of R is a subset S ⊆ R that is also a ring.
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The two rings of order 6

The additive group Z6 is a ring, where multiplication is defined modulo 6.
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However, this is not the only way to add a ring structure to (Z6,+).
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All finite groups we’ve encountered occur naturally in some context (e.g., as matrices).
Rings like the one above are somewhat “contrived”.
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Some rings of order 4

Consider the Klein 4-group

V4 ∼=
{

(0, 0)︸ ︷︷ ︸
0

, (1, 0)︸ ︷︷ ︸
a

, (0, 1)︸ ︷︷ ︸
b

, (1, 1)︸ ︷︷ ︸
c

}
.
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There are 8 ways to define a multiplicative structure on this additive group. Here are 4:
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Here is another way, that can be represented with matrices:{[
0 0
0 0

]
︸ ︷︷ ︸

0

,

[
1 0
0 1

]
︸ ︷︷ ︸

a

,

[
0 0
1 0

]
︸ ︷︷ ︸

b

,

[
1 0
1 1

]
︸ ︷︷ ︸

c

}
.
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It turns out that for any prime p, there are exactly 11 rings of order p2.
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Finite rings

In general, we’ll be more interested in infinite rings.

However, let’s say a few words about finite rings, mostly for fun.

n 1 2 3 4 5 6 7 8 9 10 11 12 16 32
# groups 1 1 1 2 1 2 1 5 2 2 1 5 14 51
# rings w/ 1 1 1 1 4 1 1 1 11 4 1 1 4 50 208
# rings 1 2 2 11 2 4 2 52 11 4 2 22 390 > 18590
# non-comm 0 0 0 2 0 0 0 18 2 0 0 18 228 ?

Small noncommutative rings with 1 are “rare”. There are

13 of size 16

one each of sizes 8, 24, and 27

and no others of order less than 32.

For distinct primes p and q, (p ≥ 3), there are the following number of algebraic structures:

n p p2 p3 pq p2q
# groups 1 2 5 2 ≤ 5
# rings 2 11 3p + 50 4 22

Going forward, the only fintie rings we’ll typically encounter are Zn and finite fields.
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Some infinite rings

Examples
1. Z ⊂ Q ⊂ R ⊂ C are all commutative rings with 1.

2. For any ring R with 1, the set Mn(R) of n× n matrices over R is a ring. It has identity
1Mn(R) = In iff R has 1.

3. For any ring R, the set of functions F = {f : R → R} is a ring by defining

(f + g)(r) = f (r) + g(r), (fg)(r) = f (r)g(r) .

4. The set S = 2Z is a subring of Z but it does not have 1.

5. S =

{[
a 0
0 0

]
: a ∈ R

}
is a subring of R = M2(R). However, note that

1R =

[
1 0
0 1

]
, but 1S =

[
1 0
0 0

]
.

6. If R is a ring and x a variable, then the set

R[x ] =
{
anxn + · · ·+ a1x + a0 | ai ∈ R

}
is called the polynomial ring over R.
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Another example: the Hamiltonians

Recall the (unit) quaternion group:

Q8 =
〈
i , j , k | i2 = j2 = k2 = −1, ij = k

〉
.

1

i

−1

−i

j

−k

−j

k

Allowing addition makes them into a ring H, called the quaternions, or Hamiltonians:

H =
{
a + bi + cj + dk | a, b, c, d ∈ R

}
.

The set H is isomorphic to a subring of M4(R), the real-valued 4× 4 matrices:

H ∼=


a −b −c −d
b a −d c
c d a −b
d −c b a

 : a, b, c, d ∈ R

 ⊆ M4(R) .

Formally, we have an embedding φ : H ↪→ M4(R) where

φ(i) =

[
0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

]
, φ(j) =

[
0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

]
, φ(k) =

[
0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

]
.

Just like with groups, we say that H is represented by a set of matrices.
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Units and zero divisors

Informally, a ring is a set where we can add, substract, multiply, but not necessarily divide.

Definition
A unit is any u ∈ R that has a multiplicative inverse: some v ∈ R such that uv = vu = 1.

Let U(R) be the set (a multiplicative group) of units of R.

An element x ∈ R is a left zero divisor if xy = 0 for some y 6= 0. (Right zero divisors are
defined analogously.)

Examples
1. Let R = Z. The units are U(R) = {−1, 1}. There are no (nonzero) zero divisors.

2. Let R = Z10. Then 7 is a unit (and 7−1 = 3) because 7 · 3 = 1. But 2 is not a unit.

3. Let R = Zn. A nonzero k ∈ Zn is a unit if gcd(n, k) = 1, and a zero divisor otherwise.

4. The ring R = M2(R) has zero divisors, such as:[
1 −2
−2 4

] [
6 2
3 1

]
=

[
0 0
0 0

]
The groups of units of M2(R) are the invertible matrices.
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Group rings

A rich family of examples of rings can be constructed from multiplicative groups.

Let G be a finite (multiplicative) group, and R a commutative ring (usually, Z, R, or C).

The group ring RG is the set of formal linear combinations of groups elements with
coefficients from R. That is,

RG :=
{
a1g1 + · · ·+ angn | ai ∈ R, gi ∈ G

}
,

where multiplication is defined in the “obvious” way.

For example, let R = Z and G = D4, and take x = r + r2 − 3f and y = −5r2 + rf in ZD4.

Their sum is
x + y = r − 4r2 − 3f + rf ,

and their product is

xy = (r + r2 − 3f )(−5r2 + rf ) = r(−5r2 + rf ) + r2(−5r2 + rf )− 3f (−5r2 + rf )

= −5r3 + r2f − 5r4 + r3f + 15fr2 − 3frf = −5− 8r3 + 16r2f + r3f .
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Group rings

For another example, consider the group ring RQ8. Elements are formal sums

a + bi + cj + dk + e(−1) + f (−i) + g(−j) + h(−k), a, . . . , h ∈ R.

Every choice of coefficients gives a different element in RQ8!

For example, if all coefficients are zero except a = e = 1, we get

1 + (−1) 6= 0 ∈ RQ8.

In contrast, in the Hamiltonians, H =
{
a + bi + cj + dk | a, b, c, d ∈ R

}
,

1 + (−1) = [1 + 0i + 0j + 0k] + [(−1) + 0i + 0j + 0k] = (1− 1) + 0i + 0j + 0k = 0.

Therefore, H and RQ8 are different rings.

Remarks
If g ∈ G has finite order |g| = k > 1, then RG always has zero divisors:

(1− g)(1 + g + · · ·+ gk−1) = 1− gk = 1− 1 = 0.

RG contains a subring isomorphic to R.

the group of units U(RG) contains a subgroup isomorphic to G .
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Fields and division rings

Definition
A field is a commutative ring where all nonzero elements have a multiplicative inverse.

Examples of fields we’ve seen include Q, R, C, and Zp for prime p.

Definition
A quadratic field is any field of the form

Q(
√
m) =

{
r + s

√
m | r , s ∈ Q

}
,

where m 6= 0, 1 is a square-free integer. We say “Q adjoin
√
m”

Notice that this is a field because every nonzero number has a multiplicative inverse:

(r + s
√
m)(r − s

√
m) = r2 − s2m, (r + s

√
m)−1 =

r − s
√
m

r2 − s2m
.

If we drop the commutative requirement, the result is called a skew field, or division ring.

The Hamiltonians H are a division ring that is not a field.
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Integral domains

Definition
An integral domain is a commutative ring with 1 and with no (nonzero) zero divisors.

An integral domain is a “field without inverses”.

A field is just a commutative division ring. Moreover:

fields ( division rings, fields ( integral domains.

Examples
Rings that are not integral domains: Zn (composite n), 2Z, Mn(R), Z× Z, H.

Integral domains that are not fields (or even division rings): Z, Z[x ], R[x ], R[[x ]]
(formal power series).

The ring “Z adjoin
√
m,” defined as

Z[
√
m] =

{
a + b

√
m | a, b ∈ Z

}
,

is an integral domain, but not a field.
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Cancellation

When doing basic algebra, we often take for granted basic properties such as cancellation:

ax = ay =⇒ x = y .

However, this need not hold in all rings!

Examples where cancellation fails
In Z6, note that 2 = 2 · 1 = 2 · 4, but 1 6= 4.

In M2(R), note that
[
1 0
0 0

]
=

[
0 1
0 0

] [
4 1
1 0

]
=

[
0 1
0 0

] [
1 2
1 0

]
.

However, everything works fine as long as there aren’t any (nonzero) zero divisors.

Proposition
Let R be an integral domain and a 6= 0. If ax = ay for some x , y ∈ R, then x = y .

Proof
If ax = ay , then ax − ay = a(x − y) = 0.

Since a 6= 0 and R has no (nonzero) zero divisors, then x − y = 0. �

M. Macauley (Clemson) Chapter 7: Rings Math 4120, Modern algebra 13 / 66

mailto:macaule@clemson.edu


Finite integral domains

Remark

If R is an integral domain and 0 6= a ∈ R and k ∈ N, then ak 6= 0. �

Theorem
Every finite integral domain is a field.

Proof
Suppose R is a finite integral domain and 0 6= a ∈ R. It suffices to show that a has a
multiplicative inverse.

Consider the infinite sequence a, a2, a3, a4, . . . , which must repeat.

Find i > j with ai = aj , which means that

0 = ai − aj = aj (ai−j − 1).

Since R is an integral domain and aj 6= 0, then ai−j = 1.

Thus, a · ai−j−1 = 1. �
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Ideals
In group theory, we can quotient out by a subgroup if and only if it is normal.

The analogue of this for rings are (two-sided) ideals.

Definition
A subring I ⊆ R is a left ideal if

rx ∈ I for all r ∈ R and x ∈ I .

Right ideals, and two-sided ideals are defined similarly.

If R is commutative, then all left (or right) ideals are two-sided.

We use the term ideal and two-sided ideal synonymously, and write I E R.

Examples
nZE Z.

If R = M2(R), then I =

{[
a 0
c 0

]
: a, c ∈ R

}
is a left, but not a right ideal of R.

The set Symn(R) of symmetric n × n matrices is a subring of Mn(R), but not an ideal.

The set Z is a subring of Z[x ] but not an ideal.
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Ideals

Remark
If an ideal I of R contains 1, then I = R.

Proof
Suppose 1 ∈ I , and take an arbitrary r ∈ R.

Then r1 ∈ I , and so r1 = r ∈ I . Therefore, I = R. �

We can modify the above result to show that if I contains any unit, then I = R. (HW)

Let’s compare the concept of a normal subgroup to that of an ideal:

normal subgroups are characterized by being invariant under conjugation:

H ≤ G is normal iff ghg−1 ∈ H for all g ∈ G , h ∈ H.

(left) ideals of rings are characterized by being invariant under (left) multiplication:

I ⊆ R is a (left) ideal iff rx ∈ I for all r ∈ R, x ∈ I .
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Ideals generated by sets

Definition
The left ideal generated by a set X ⊂ R is defined as:

(X ) :=
⋂ {

I : I is a left ideal s.t. X ⊆ I ⊆ R
}
.

This is the smallest left ideal containing X .

There are analogous definitions by replacing “left” with “right” or “two-sided”.

Recall the two ways to define the subgroup 〈X 〉 generated by a subset X ⊆ G :

“Bottom up”: As the set of all finite products of elements in X ;

“Top down”: As the intersection of all subgroups containing X .

Proposition (HW)

Let R be a ring with 1. The (left, right, two-sided) ideal generated by X ⊆ R is:

Left: {r1x1 + · · ·+ rnxn : n ∈ N, ri ∈ R, xi ∈ X},
Right: {x1r1 + · · ·+ xnrn : n ∈ N, ri ∈ R, xi ∈ X},
Two-sided: {r1x1s1 + · · ·+ rnxnsn : n ∈ N, ri , si ∈ R, xi ∈ X}.
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Ideals generated by sets

As we did with groups, if S = {x}, we can write (x) rather than ({x}), etc.

Let’s see some examples of ideals in R = Z[x ].

(x) =
{
xf (x) | f ∈ Z[x ]

}
=
{
anxn + · · ·+ a1x | ai ∈ Z

}
.

(2) =
{
2f (x) | f ∈ Z[x ]

}
=
{
2anxn + · · ·+ 2a1x + 2a0 | ai ∈ Z

}
.

(x , 2) =
{
xf (x) + 2g(x) | f , g ∈ Z[x ]

}
=
{
anxn + · · ·+ a1x + 2a0 | ai ∈ Z

}
.

Notice that we have

(x) ( (x , 2) ( R, and (2) ( (x , 2) ( R.

The ideal (x , 2) is said to be maximal, because there is nothing “between” it and R.

Question
How different would these ideals be in the ring R = Q[x ]?
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Ideals and quotients
Since an ideal I of R is an additive subgroup (and hence normal), then:

R/I = {x + I | x ∈ R} is the set of cosets of I in R;

R/I is a quotient group; with the binary operation (addition) defined as

(x + I ) + (y + I ) := x + y + I .

It turns out that if I is also a two-sided ideal, then we can make R/I into a ring.

Proposition
If I ⊆ R is a (two-sided) ideal, then R/I is a ring (called a quotient ring), where
multiplication is defined by

(x + I )(y + I ) := xy + I .

Proof
We need to show this is well-defined. Suppose x + I = r + I and y + I = s + I . This means
that x − r ∈ I and y − s ∈ I .

It suffices to show that xy + I = rs + I , or equivalently, xy − rs ∈ I :

xy − rs = xy − ry + ry − rs = (x − r)y + r(y − s) ∈ I .
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Motivation (spoilers!)

Many of the big ideas from group homomorphisms carry over to ring homomorphisms.

Group theory
The quotient group G/N exists iff N is a normal subgroup.

A homomorphism is a structure-preserving map: f (x ∗ y) = f (x) ∗ f (y).

The kernel of a homomorphism is a normal subgroup: Ker(φ)E G .

For every normal subgroup N E G , there is a natural quotient homomorphism
φ : G → G/N, φ(g) = gN.

There are four standard isomorphism theorems for groups.

Ring theory
The quotient ring R/I exists iff I is a two-sided ideal.

A homomorphism is a structure-preserving map: f (x + y) = f (x) + f (y) and
f (xy) = f (x)f (y).

The kernel of a homomorphism is a two-sided ideal: Ker(φ)E R.

For every two-sided ideal I E R, there is a natural quotient homomorphism
φ : R → R/I , φ(r) = r + I .

There are four standard isomorphism theorems for rings.
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Ring homomorphisms

Definition
A ring homomorphism is a function f : R → S satisfying

f (x + y) = f (x) + f (y) and f (xy) = f (x)f (y) for all x , y ∈ R.

A ring isomorphism is a homomorphism that is bijective.

The kernel f : R → S is the set Ker(f ) := {x ∈ R | f (x) = 0}.

Examples
1. The ring homomorphism φ : Z→ Zn sending k 7→ k (mod n) has Ker(φ) = nZ.
2. For a fixed real number α ∈ R, the “evaluation function”

φ : R[x ] −→ R , φ : p(x) 7−→ p(α)

is a homomorphism. The kernel consists of all polynomials that have α as a root.

3. The following is a homomorphism, for the ideal I = (x2 + x + 1) in Z2[x ]:

φ : Z2[x ] −→ Z2[x ]/I , f (x) 7−→ f (x) + I .
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Ring homomorphisms

Proposition
The kernel of a ring homomorphism φ : R → S is a two-sided ideal.

Proof
We know that Ker(φ) is an additive subgroup of R.

We must show that it’s a subring, and an ideal.

Subring: Let k1, k2 ∈ Ker(φ). Then

φ(k1k2) = φ(k1)φ(k2) = 0 · 0 = 0,

and so k1k2 ∈ Ker(φ). X

Left ideal: Let k ∈ Ker(φ) and r ∈ R. Then

φ(rk) = φ(r)φ(k) = r · 0 = 0,

and so rk ∈ Ker(φ). X

Showing that Ker(φ) is a right ideal is analogous. �
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The isomorphism theorems for rings

All of the isomorphism theorems for groups have analogues for rings.

Fundamental homomorphism theorem: “All homomorphic images are quotients”

Correspondence theorem: Characterizes “subrings and ideals of quotients”

Freshman theorem: Characterizes “quotients of quotients”

Diamond isomorphism theorem: characterizes “quotients of a sum”

Since a ring is an abelian group with extra structure, we often don’t have to prove these
from scratch.
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The FHT for rings: all homomorphic images are quotients

Fundamental homomorphism theorem for rings
If φ : R → S is a ring homomorphism, then Ker(φ) is an ideal and Im(φ) ∼= R/Ker(φ).

R

(I = Ker(φ))

φ

any homomorphism

R
/

Ker(φ)

quotient
ring

Im(φ) ≤ S

q
quotient
map

ι
remaining isomorphism

(“relabeling”)

Proof (HW)
The statement holds for the underlying additive group R. Thus, it remains to show that
Ker(φ) is a (two-sided) ideal, and the following relabeling map is a ring homomorphism:

ι : R/I −→ Im(φ) , ι(r + I ) = φ(r) .
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The FHT for rings
Consider the ring homomorphism φ : Z32 −→ Z22, φ : abc 7−→ bc.

100 110

111101

000 010

011001

I

001+I

010+I

011+I

R = Z32
φ

“quotient map” q

φ = ι ◦ q

I 010+I

001+I 011+I

Z32/I

ι “relabeling map”

00 10

01 11

Z22
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The FHT for rings

Consider the ring homomorphism φ : Z32 −→ Z22, φ : abc 7−→ bc.

By the FHT for groups, we know that Z32/Ker(φ) ∼= Im(φ) = Z22, as (additive) groups.
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The image is isomorphic to the Klein 4-group

V4 ∼=
{

(0, 0)︸ ︷︷ ︸
0

, (1, 0)︸ ︷︷ ︸
a

, (0, 1)︸ ︷︷ ︸
b

, (1, 1)︸ ︷︷ ︸
c

}
.
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The FHT theorem for rings says that ι also preserves the multiplicative structure of R/I .
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The FHT for rings
Consider the ring homomorphism φ : Z32 −→ Z22, φ : abc 7−→ bc.

The following Cayley tables show how ι preserves the multiplicative structure:

ι
(
(r + I )(s + I )

)
= ι(rs + I ).
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This quotient ring is isomorphic to{[
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0 0

]
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The correspondence theorem: subrings of quotients

Correspondence theorem
Let I be an ideal of R. There is a bijective correspondence between subrings of R/I and
subrings of R that contain I .

Moreover every ideal of R/I has the form J/I , for some ideal J satisfying I ⊆ J ⊆ R.

Here is an example for the ring R = Z8 × Z2:

〈(1, 0), (0, 1)〉

〈(1, 1)〉〈(2, 1)〉 〈(1, 0)〉

〈(0, 1), (4, 0)〉 〈(2, 1)〉 〈(2, 0)〉

〈(0, 1)〉 〈(4, 1)〉 〈(4, 0)〉= I

〈(0, 0)〉

〈(1, 0), (0, 1)〉/I

〈(1, 1)〉/I〈(2, 1)〉/I 〈(1, 0)〉/I

〈(0, 1), (4, 0)〉/I 〈(2, 1)〉/I 〈(2, 0)〉/I

〈(0, 1)〉/I 〈(4, 1)〉/I 〈(4, 0)〉/I

〈(0, 0)〉/I
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Maximal ideals and simple rings

Define a maximal normal subgroup M of G is one for which there are no normal subgroups
properly between them.

Formally, we can write this as

M ≤ N ≤ G , and M,N E G =⇒ N = M, or N = G .

By the correspondence theorem, M is a maximal normal subgroup iff G/M is simple.

We can define analogous terms for rings.

Definition
A (proper) ideal I of R is maximal if I ⊆ J ⊆ R holds implies J = I or J = R.

A ring R is simple if its only (two-sided) ideals are 0 and R.

The following is immediate by the correspondence theorem.

Remark
An ideal M of R is maximal iff R/M is simple.
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Maximal ideals and simple rings
Simple rings have no nontrivial proper ideals. Proper ideals cannot contain units.

In a field, every nonzero element is a unit. Therefore, fields have no nontrivial proper ideals.

Proposition
A commutative ring R is simple iff it is a field.

Proof
“⇒”: Assume R is simple. Then (a) = R for any nonzero a ∈ R.

Thus, 1 ∈ (a), so 1 = ba for some b ∈ R, so a ∈ U(R) and R is a field. X

“⇐”: Let I ⊆ R be a nonzero ideal of a field R. Take any nonzero a ∈ I .

Then a−1a ∈ I , and so 1 ∈ I , which means I = R. X �

Theorem
Let R be a commutative ring with 1. The following are equivalent for an ideal I ⊆ R.

(i) I is a maximal ideal;

(ii) R/I is simple;

(iii) R/I is a field.
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Examples of maximal ideals
In a commutative ring, an ideal M 6= 0 is a maximal iff R/M is a field.

1. The maximal ideals of R = Z are of the form M = (p), where p is prime. The quotient
field is Z/(p) ∼= Zp.

2. The maximal ideals of R = Z[x ] are of the form

(x , p) =
{
xf (x) + p · g(x) | f , g ∈ Z[x ]

}
=
{
anxn + · · ·+ a1x + pa0 | ai ∈ Z

}
.

In the quotient field, “x := 0” and “p := 0”, and so

Z[x ]/(x , p) =
{
a0 + M | a0 = 0, . . . , p − 1

} ∼= Zp.
3. Let R = Q[x ]. The ideal

(x) =
{
xf (x) | f ∈ Q[x ]

}
=
{
anxn + · · ·+ a1x | ai ∈ Z

}
is maximal. In the quotient field, “x := 0”, and so

Q[x ]/(x) =
{
a0 + M | a0 ∈ Q

} ∼= Q.
4. In the multivariant ring R = F [x , y ] over a field, the ideal

I = (x , y) =
{
x · f (x , y) + y · g(x , y) | f , g ∈ R

}
of all polynomials with no constant term is maximal. The quotient field is R/I ∼= F .
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Finite fields
We’ve already seen that:

Zp is a field if p is prime

every finite integral domain is a field.

But what do these “other” finite fields look like?

Let R = Z2[x ]. (Note: we can ignore all negative signs.)

The polynomial f (x) = x2 + x + 1 is irreducible over Z2 because it does not factor as a
product f (x) = g(x)h(x) of lower-degree terms. (Note that f (0) = f (1) = 1 6= 0.)

Consider the ideal I = (x2 + x + 1), the set of multiples of x2 + x + 1.

In the quotient ring R/I , we have the relation x2 + x + 1 = 0, or equivalently,

x2 = −x − 1 = x + 1.

The quotient has only 4 elements:

0 + I , 1 + I , x + I , (x + 1) + I .

As with the quotient group (or ring) Z/nZ, we usually drop the “ I ”, and just write

R/I = Z2[x ]/(x2 + x + 1) ∼=
{
0, 1, x , x + 1

}
.
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Finite fields

Here are the Cayley graph and Cayley tables for R/I = Z2[x ]/(x2 + x + 1):
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0
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1
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1
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x

x+1

1

x+1

1

x

Theorem
There exists a finite field Fq of order q, which is unique up to isomorphism, iff q = pn for
some prime p. If n > 1, then this field is isomorphic to the quotient ring

Zp[x ]/(f ),

where f is any irreducible polynomial of degree n.

Much of the error correcting techniques in coding theory are built using mathematics over
F28 = F256. This is what allows DVDs to play despite scratches.
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Existence of maximal ideals

In a finite ring, it is clear that every ideal is contained in a maximal ideal.

To show this for infinite rings, we need the following, which is equivalent to the axiom of
choice from set theory.

Zorn’s lemma
If P 6= ∅ is a poset in which every chain has an upper bound, then P has a maximal element.

Proposition
If R is a ring with 1, then every ideal I 6= R is contained in a maximal ideal M.

Proof
Let P = {J ≤ R | I ⊆ J ( R}, ordered by inclusion.

Every chain C has a maximal element, LC =
⋃
J∈C

J, and hence an upper bound.

By Zorn’s lemma, there is some maximal element M in P, which is a maximal ideal.
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The freshman theorem: quotients of quotients
The correspondence theorem characterizes the subring structure of the quotient R/J.

Every subring of R/I is of the form J/I , where I ≤ J ≤ R.

Moreover, if J E R is an ideal, then J/I E R/I . In this case, we can ask:

What is the quotient ring (R/I )/(J/I ) isomorphic to?

Freshman theorem
Suppose R is a ring with ideals I ⊆ J. Then J/I is an ideal of R/I and

(R/I )/(J/I ) ∼= R/J.

Here is an example for the ring R = Z8 × Z2:

〈(1,0),(0,1)〉

〈(1,1)〉〈(2,1)〉 〈(1,0)〉

〈(0,1),(4,0)〉 〈(2,1)〉 〈(2,0)〉=J

〈(0, 1)〉 〈(4,1)〉 〈(4,0)〉= I

〈(0,0)〉

〈(1,0),(0,1)〉/I

〈(1,1)〉/I〈(2,1)〉/I 〈(1,0)〉/I

〈(0,1),(4,0)〉/I 〈(2,1)〉/I 〈(2,0)〉/I

〈(0,1)〉/I 〈(4,1)〉/I 〈(4,0)〉/I

〈(0,0)〉/I

〈(1,0),(0,1)〉

〈(1,1)〉〈(2,1)〉 〈(1,0)〉

〈(0,1),(4,0)〉 〈(2,1)〉 〈(2,0)〉

〈(0, 1)〉 〈(4,1)〉 〈(4,0)〉

〈(0,0)〉
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The freshman theorem: quotients of quotients

For another visualization, consider R = Z6 × Z4 and write elements as strings.

Consider the ideals J = 〈30, 02〉 ∼= V4 and I = 〈30, 01〉 ∼= Z2 × Z4.

Notice that I ≤ J ≤ R, and I = J ∪ (01+J), and

R/I =
{
I , 01+I , 10+I , 11+I , 20+I , 21+I

}
, J/I = {I , 01+I}

R/J =
{
I ∪ (01+I ), (10+I ) ∪ (11+I ), (20+I ) ∪ (21+I )

}
(R/I )/(J/I ) =

{
{I , 01+I}, {10+I , 11+I}, {20+I , 21+I}

}
.

50 52

20 22

51 53

21 23

40 42

10 12

41 43

11 13

30 32

00 02

31 33

01 03

I ≤ J ≤ R

50 52

20 22
20+ I

51 53

21 23
21+ I

40 42

10 12
10+ I

41 43

11 13
11+ I

30 32

00 02
I

31 33

01 03
01+ I

R/I consists of 6 cosets
J/I = {I , 01+I}

50 52

20 22

51 53

21 23

40 42

10 12

41 43

11 13

30 32

00 02

31 33

01 03

20+J

10+J

J

R/J consists of 3 cosets
(R/I )/(J/I ) ∼= R/J
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The diamond isomorphism theorem: quotients of sums

Diamond isomorphism theorem
Suppose S is a subring and I an ideal of R. Then

(i) The sum S + I = {s + i | s ∈ S, i ∈ I} is a subring of R and the
intersection S ∩ I is an ideal of S.

(ii) The following quotient rings are isomorphic:

(S + I )/I ∼= S/(S ∩ I ) .

R

S + I

S I

S∩I

Proof (sketch)
S + I is an additive subgroup, and it’s closed under multiplication because

s1, s2 ∈ S, i1, i2 ∈ I =⇒ (s1 + i1)(s2 + i2) = s1s2︸︷︷︸
∈S

+ s1i2 + i1s2 + i1i2︸ ︷︷ ︸
∈I

∈ S + I .

Showing S ∩ I is an ideal of S is straightforward (homework exercise).

We already know that (S + I )/I ∼= S/(S ∩ I ) as additive groups.

One explicit isomorphism is φ : s + (S ∩ I ) 7→ s + I . It is easy to check that φ : 1 7→ 1 and φ
preserves products. �
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The diamond isomorphism theorem: quotients of products by factors

Let R = Z2 × Z6, and consider the subring S = 〈(1, 0), (0, 3)〉 and ideal I = 〈(0, 2)〉.

Then R = I + J, and I ∩ J = 〈(0, 0)〉.

Let’s interpret the diamond theorem (S + I )/I ∼= S/S ∩ I in terms of the subgroup lattice.

Z2 × Z6

〈(1, 2)〉 〈(1, 1)〉 〈(0, 1)〉

〈(1, 0), (0, 3)〉

〈(0, 2)〉

〈(1, 0)〉 〈(1, 3)〉 〈(0, 3)〉

〈(0, 0)〉
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Prime ideals

Definition
Let R be a commutative ring. An ideal P ⊂ R is prime if ab ∈ P implies either a ∈ P or
b ∈ P.

Note that p ∈ N is a prime number iff p = ab implies either a = p or b = p.

Examples
1. The ideal (n) of Z is a prime ideal iff n is a prime number (possibly n = 0).

2. In the polynomial ring Z[x ], the ideal I = (2, x) is a prime ideal. It consists of all
polynomials whose constant coefficient is even.

Theorem
An ideal P ⊆ R is prime iff R/P is an integral domain.

The proof is straightforward (HW). Since fields are integral domains, the following is
immediate:

Corollary
In a commutative ring, every maximal ideal is prime.
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Divisibility and factorization

A ring is in some sense, a generalization of the familiar number systems like Z, R, and C,
where we are allowed to add, subtract, and multiply.

Two key properties about these structures are:

multiplication is commutative,

there are no (nonzero) zero divisors.

Blanket assumption
Henceforth, unless explicitly mentioned otherwise, R is assumed to be an integral domain,
and we will define R∗ := R \ {0}.

The integers have several basic properties that we usually take for granted:

every nonzero number can be factored uniquely into primes;

any two numbers have a unique greatest common divisor and least common multiple;

there is a Euclidean algorithm, which can find the gcd of two numbers.

Surprisingly, these need not always hold in integrals domains! We would like to understand
this better.
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Divisibility

Definition
If a, b ∈ R, say that a divides b, or b is a multiple of a if b = ac for some c ∈ R. We write
a | b.

If a | b and b | a, then a and b are associates, written a ∼ b.

Examples
In Z: n and −n are associates.

In R[x ]: f (x) and c · f (x) are associates for any c 6= 0.

The only associate of 0 is itself.

The associates of 1 are the units of R.

Proposition (HW)

Two elements a, b ∈ R are associates if and only if a = bu for some unit u ∈ U(R).

This defines an equivalence relation on R, and partitions R into equivalence classes.
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Irreducibles and primes

Note that units divide everything: if b ∈ R and u ∈ U(R), then u | b.

Definition
If b 6∈ U(R) and its only divisors are units and associates of b, then b is irreducible.

An element p ∈ R is prime if p is not a unit, and p | ab implies p | a or p | b.

Proposition
If 0 6= p ∈ R is prime, then p is irreducible.

Proof
Suppose p is not irreducible. Then p = ab with a, b 6∈ U(R).

Then (wlog) p | a, so a = pc for some c ∈ R. Now,

p = ab = (pc)b = p(cb) .

This means that cb = 1, and thus b ∈ U(R). Therefore, p is prime. �
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Irreducibles and primes

Caveat: Irreducible 6⇒ prime

Consider the ring R−5 := {a + b
√
−5 : a, b ∈ Z}.

3 | (2 +
√
−5)(2−

√
−5) = 9 = 3 · 3 ,

but 3 - 2 +
√
−5 and 3 - 2−

√
−5.

Thus, 3 is irreducible in R−5 but not prime.

When irreducibles fail to be prime, we can lose nice properties like unique factorization.

Things can get really bad: not even the lengths of factorizations into irreducibles need be
the same!

For example, consider the ring R = Z[x2, x3]. Then

x6 = x2 · x2 · x2 = x3 · x3.

The element x2 ∈ R is not prime because x2 | x3 · x3 yet x2 - x3 in R (note: x 6∈ R).
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Principal ideal domains

Fortunately, there is a type of ring where such “bad things” don’t happen.

Definition
An ideal generated by a single element a ∈ R, denoted I = (a), is called a principal ideal.

If every ideal of R is principal, then R is a principal ideal domain (PID).

Examples
The following are all PIDs (stated without proof):

The ring of integers, Z.
Any field F .

The polynomial ring F [x ] over a field.

As we will see shortly, PIDs are “nice” rings. Here are some properties they enjoy:

pairs of elements have a “greatest common divisor” & “least common multiple”

irreducible ⇒ prime

Every element factors uniquely into primes.
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Greatest common divisors & least common multiples

Proposition
If I ⊆ Z is an ideal, and a ∈ I is its smallest positive element, then I = (a).

Proof
Pick any positive b ∈ I . Write b = aq + r , for q, r ∈ Z and 0 ≤ r < a.

Then r = b − aq ∈ I , so r = 0. Therefore, b = qa ∈ (a). �

Definition
A common divisor of a, b ∈ R is an element d ∈ R such that d | a and d | b.

Moreover, d is a greatest common divisor (GCD) if c | d for all other common divisors c of
a and b.

A common multiple of a, b ∈ R is an element m ∈ R such that a | m and b | m.

It’s a least common multiple (LCM) if m | n for all other common multiples n of a and b.
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Nice properties of PIDs

Proposition
If R is a PID, then any a, b ∈ R∗ have a GCD, d = gcd(a, b).

It is unique up to associates, and can be written as d = xa + yb for some x , y ∈ R.

Proof
Existence. The ideal generated by a and b is

I = (a, b) = {ua + vb : u, v ∈ R} .

Since R is a PID, we can write I = (d) for some d ∈ I , and so d = xa + yb.

Since a, b ∈ (d), both d | a and d | b hold.

If c is a divisor of a & b, then c | xa + yb = d , so d is a GCD for a and b. X

Uniqueness. If d ′ is another GCD, then d | d ′ and d ′ | d , so d ∼ d ′. X �
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Nice properties of PIDs

Corollary
If R is a PID, then every irreducible element is prime.

Proof
Let p ∈ R be irreducible and suppose p | ab for some a, b ∈ R.

If p - a, then gcd(p, a) = 1, so we may write 1 = xa + yp for some x , y ∈ R. Thus

b = (xa + yp)b = x(ab) + (yb)p .

Since p | x(ab) and p | (yb)p, then p | x(ab) + (yb)p = b. �

Not surprisingly, least common multiples also have a nice characterization in PIDs.

Proposition (HW)

If R is a PID, then any a, b ∈ R∗ have an LCM, m = lcm(a, b).

It is unique up to associates, and can be characterized as a generator of the ideal
I := (a) ∩ (b).
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Unique factorization domains

Definition
An integral domain is a unique factorization domain (UFD) if:

(i) Every nonzero element is a product of irreducible elements;

(ii) Every irreducible element is prime.

Examples
1. Z is a UFD: Every integer n ∈ Z can be uniquely factored as a product of irreducibles

(primes):
n = pd11 pd22 · · · p

dk
k .

This is the fundamental theorem of arithmetic.

2. The ring Z[x ] is a UFD, because every polynomial can be factored into irreducibles.
But it is not a PID because the following ideal is not principal:

(2, x) = {f (x) : the constant term is even}.

3. The ring R−5 is not a UFD because 9 = 3 · 3 = (2 +
√
−5)(2−

√
−5).

4. We’ve shown that (ii) holds for PIDs. Next, we will see that (i) holds as well.
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Unique factorization domains

Theorem
If R is a PID, then R is a UFD.

Proof
We need to show Condition (i) holds: every element is a product of irreducibles. A ring is
Noetherian if every ascending chain of ideals

I1 ⊆ I2 ⊆ I3 ⊆ · · ·

stabilizes, meaning that Ik = Ik+1 = Ik+2 = · · · holds for some k.

Suppose R is a PID. It is not hard to show that R is Noetherian (HW). Define

X = {a ∈ R∗ \ U(R) : a can’t be written as a product of irreducibles}.

If X 6= ∅, then pick a1 ∈ X . Factor this as a1 = a2b, where a2 ∈ X and b 6∈ U(R). Then
(a1) ( (a2) ( R, and repeat this process. We get an ascending chain

(a1) ( (a2) ( (a3) ( · · ·

that does not stabilize. This is impossible in a PID, so X = ∅. �
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Summary of ring types

fields

Q

AR
R(
√
−π) Q(

√
m)

Z2[x ]/(x2+x+1)

F256

CZp

Q( 3√2, ζ)

PIDs
F [x ] Z

UFDs
F [x , y ] Z[x ]

integral domains
Z[x2, x3] R−5

commutative rings

2Z

Z× Z Z6

all rings
RG Mn(R)

H
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The Euclidean algorithm

Around 300 B.C., Euclid wrote his famous book, the
Elements, in which he described what is now known as the
Euclidean algorithm:

Proposition VII.2 (Euclid’s Elements)
Given two numbers not prime to one another, to find their greatest common measure.

The algorithm works due to two key observations:

If a | b, then gcd(a, b) = a;

If a = bq + r , then gcd(a, b) = gcd(b, r).

This is best seen by an example: Let a = 654 and b = 360.

654 = 360 · 1 + 294 gcd(654, 360) = gcd(360, 294)
360 = 294 · 1 + 66 gcd(360, 294) = gcd(294, 66)
294 = 66 · 4 + 30 gcd(294, 66) = gcd(66, 30)
66 = 30 · 2 + 6 gcd(66, 30) = gcd(30, 6)
30 = 6 · 5 gcd(30, 6) = 6.

We conclude that gcd(654, 360) = 6.
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Euclidean domains

Loosely speaking, a Euclidean domain is a ring for which the Euclidean algorithm works.

Definition
An integral domain R is Euclidean if it has a degree function d : R∗ → Z satisfying:

(i) non-negativity: d(r) ≥ 0 ∀r ∈ R∗.

(ii) monotonicity: d(a) ≤ d(ab) for all a, b ∈ R∗.

(iii) division-with-remainder property: For all a, b ∈ R, b 6= 0, there are q, r ∈ R such that

a = bq + r with r = 0 or d(r) < d(b) .

Note that Property (ii) could be restated to say: If a | b, then d(a) ≤ d(b);

Since 1 divides every x ∈ R,

d(1) ≤ d(x), for all x ∈ R.

Similarly, if x divides 1, then d(x) ≤ d(1). Elements that divide 1 are the units of R.

Proposition
If u is a unit, then d(u) = d(1). �
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Euclidean domains

Examples
R = Z is Euclidean. Define d(r) = |r |.
R = F [x ] is Euclidean if F is a field. Define d(f (x)) = deg f (x).

The Gaussian integers

R−1 = Z[
√
−1] =

{
a + bi | a, b ∈ Z

}
is Euclidean with degree function d(a + bi) = a2 + b2.

Proposition

If R is Euclidean, then U(R) =
{
x ∈ R∗ | d(x) = d(1)

}
.

Proof
We’ve already established “⊆”. For “⊇”, Suppose x ∈ R∗ and d(x) = d(1).

Write 1 = qx + r for some q ∈ R, and r = 0 or d(r) < d(x) = d(1).

But d(r) < d(1) is impossible, and so r = 0, which means qx = 1 and hence x ∈ U(R). �
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Euclidean domains

Proposition
If R is Euclidean, then R is a PID.

Proof
Let I 6= 0 be an ideal and pick some b ∈ I with d(b) minimal.

Pick a ∈ I , and write a = bq + r with either r = 0, or d(r) < d(b).

This latter case is impossible: r = a − bq ∈ I , and by minimality, d(b) ≤ d(r).

Therefore, r = 0, which means a = bq ∈ (b). Since a was arbitrary, I = (b). �

Exercises.

(i) The ideal I = (3, 2 +
√
−5) is not principal in R−5.

(ii) If R is an integral domain, then I = (x , y) is not principal in R[x , y ].

Corollary
The rings R−5 (not a PID or UFD) and R[x , y ] (not a PID) are not Euclidean.
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Algebraic integers
The algebraic integers are the roots of monic polynomials in Z[x ]. This is a subring of the
algebraic numbers (roots of all polynomials in Z[x ]).

Assume m ∈ Z is square-free with m 6= 0, 1. Recall the quadratic field

Q(
√
m) =

{
p + q

√
m | p, q ∈ Q

}
.

Definition
The ring Rm is the set of algebraic integers in Q(

√
m), i.e., the subring consisting of those

numbers that are roots of monic quadratic polynomials x2 + cx + d ∈ Z[x ].

Facts
Rm is an integral domain with 1.

Since m is square-free, m 6≡ 0 (mod 4). For the other three cases:

Rm =


Z[
√
m] =

{
a + b

√
m : a, b ∈ Z

}
m ≡ 2 or 3 (mod 4)

Z
[ 1+

√
m

2

]
=
{
a + b

( 1+
√
m

2 ) : a, b ∈ Z
}

m ≡ 1 (mod 4)

R−1 is the Gaussian integers, which is a PID. (easy)

R−19 is a PID. (hard)
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Algebraic integers

Definition
For x = r + s

√
m ∈ Q(

√
m), define the norm of x to be

N(x) = (r + s
√
m)(r − s

√
m) = r2 −ms2 .

Rm is norm-Euclidean if it is a Euclidean domain with d(x) = |N(x)|.

Note that the norm is multiplicative: N(xy) = N(x)N(y).

Exercises
Assume m ∈ Z is square-free, with m 6= 0, 1.

u ∈ U(Rm) iff |N(u)| = 1.

If m ≥ 2, then U(Rm) is infinite.

U(R−1) = {±1,±i} and U(R−3) =
{
± 1, ± 1±

√
−3

2

}
.

If m = −2 or m < −3, then U(Rm) = {±1}.

M. Macauley (Clemson) Chapter 7: Rings Math 4120, Modern algebra 56 / 66

mailto:macaule@clemson.edu


Euclidean domains and algebraic integers

Theorem
Rm is norm-Euclidean iff

m ∈ {−11,−7,−3,−2,−1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73} .

Theorem (D.A. Clark, 1994)
The ring R69 is a Euclidean domain that is not norm-Euclidean.

Let α = (1 +
√
69)/2 and c > 25 be an integer. Then the following degree function works

for R69, defined on the prime elements:

d(p) =

{
|N(p)| if p 6= 10 + 3α
c if p = 10 + 3α

Theorem
If m < 0 and m 6∈ {−11,−7,−3,−2,−1}, then Rm is not Euclidean.

Open problem
Classify which Rm’s are PIDs, and which are Euclidean.
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PIDs that are not Euclidean

Theorem
If m < 0, then Rm is a PID iff

m ∈
{
−1,−2,−3,−7,−11︸ ︷︷ ︸

Euclidean

,−19,−43,−67,−163
}
.

Recall that Rm is norm-Euclidean iff

m ∈ {−11,−7,−3,−2,−1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73} .

Corollary
If m < 0, then Rm is a PID that is not Euclidean iff m ∈ {−19,−43,−67,−163}.
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Algebraic integers

Figure: Algebraic numbers in the complex plane. Colors indicate the coefficient of the leading term: red
= 1 (algebraic integer), green = 2, blue = 3, yellow = 4. Large dots mean fewer terms and smaller
coefficients. Image from Wikipedia (made by Stephen J. Brooks).
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Algebraic integers

Figure: Algebraic integers in the complex plane. Each red dot is the root of a monic polynomial of
degree ≤ 7 with coefficients from {0,±1,±2,±3,±4,±5}. From Wikipedia.
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Summary of ring types

fields

QA
R(
√
−π, i) R

Fpn

CZp

Q(
√
m)

Euclidean domains

Z F [x ]

R−1 R69

PIDsR−43

R−19

R−67

R−163

UFDs
F [x , y ] Z[x ]

integral domains
Z[x2, x3] R−5 2Z

Z× Z Z6
commutative rings

all rings
RG Mn(R)

H
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Field of fractions

Rings allow us to add, subtract, and multiply, but not necessarily divide.

In any ring: if a ∈ R is not a zero divisor, then ax = ay implies x = y . This holds even if
a−1 doesn’t exist.

In other words, by allowing “divison” by non zero-divisors, we can think of R as a subring of
a bigger ring that contains a−1.

If R = Z, then this construction yields the rational numbers, Q.

If R is an integral domain, then this construction yields the field of fractions of R.

Goal
Given a commutative ring R, construct a larger ring in which a ∈ R (that’s not a zero
divisor) has a multiplicative inverse.

Elements of this larger ring can be thought of as fractions. It will naturally contain an
isomorphic copy of R as a subring:

R ↪→
{ r
1

: r ∈ R
}
.
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From Z to Q

Let’s examine how one can construct the rationals from the integers.

There are many ways to write the same rational number, e.g., 1
2 = 2

4 = 3
6 = · · ·

Equivalence of fractions
Given a, b, c, d ∈ Z, with b, d 6= 0,

a
b

=
c
d

if and only if ad = bc.

Addition and multiplication is defined as

a
b

+
c
d

=
ad + bc

bd
and

a
b
×

c
d

=
ac
bd
.

It is not hard to show that these operations are well-defined.

The integers Z can be identified with the subring
{ a
1 : a ∈ Z

}
of Q, and every a 6= 0 has a

multiplicative inverse in Q.

We can do a similar construction in any commutative ring!
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Rings of fractions

Blanket assumptions
R is a commutative ring.

D ⊆ R is nonempty, multiplicatively closed [d1, d2 ∈ D ⇒ d1d2 ∈ D], and contains no
zero divisors.

Consider the following set of ordered pairs:

F = {(r , d) | r ∈ R, d ∈ D},

Define an equivalence relation: (r1, d1) ∼ (r2, d2) iff r1d2 = r2d1. Denote this

equvalence class containing (r1, d1) by
r1
d1

, or r1/d1.

Definition
The ring of fractions of D with respect to R is the set of equivalence classes, RD := F/∼,
where

r1
d1

+
r2
d2

:=
r1d2 + r2d1

d1d2
and

r1
d1
×

r2
d2

:=
r1r2
d1d2

.
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Rings of fractions

Basic properties (HW)

1. These operations on RD = F/∼ are well-defined.

2. (RD ,+) is an abelian group with identity 0
d , for any d ∈ D. The additive inverse of a

d
is −ad .

3. Multiplication is associative, distributive, and commutative.

4. RD has multiplicative identity d
d , for any d ∈ D.

Examples
1. Let R = Z (or R = 2Z) and D = R − {0}. Then the ring of fractions is RD = Q.
2. If R is an integral domain and D = R − {0}, then RD is a field, called the field of

fractions.

3. If R = F [x ] and D = {xn | n ∈ Z}, then RD = F [x , x−1], the Laurent polynomials over
F .

4. If R = Z and D = 5Z, then RD = Z[ 15 ], which are “polynomials in 1
5 ” over Z.

5. If R is an integral domain and D = {d}, then RD = R[ 1d ], the set of all “polynomials in
1
d ” over R.
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Universal property of the ring of fractions
This says RD is the “smallest” ring contaning R and all fractions of elements in D:

Theorem
Let S be any commutative ring with 1 and let ϕ : R ↪→ S be any ring embedding such that
φ(d) is a unit in S for every d ∈ D.

Then there is a unique ring embedding Φ: RD → S such that Φ ◦ q = ϕ.

R S

R/D

ϕ

q Φ

r s

r/1

ϕ

q Φ

Proof

Define Φ: RD → S by Φ(r/d) = ϕ(r)ϕ(d)−1. This is well-defined and 1–1. (HW)

Uniqueness. Suppose Ψ: RD → S is another embedding with Ψ ◦ q = ϕ. Then

Ψ(r/d) = Ψ((r/1) · (d/1)−1) = Ψ(r/1) ·Ψ(d/1)−1 = ϕ(r)ϕ(d)−1 = Φ(r/d).

Thus, Ψ = Φ. �
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