Topics: Vector spaces, linear independence, and bases

1. For each of the following sets, determine if it is a vector space over \mathbb{R}. If it is, give an explicit basis and compute its dimension. If it isn't, explain why not by giving an example of how one of the vector space properties fails.
(a) The set of points in \mathbb{R}^{3} with $x=0$.
(b) The set of points in \mathbb{R}^{2} with $x=y$.
(c) The set of points in \mathbb{R}^{3} with $x=y$.
(d) The set of points in \mathbb{R}^{3} with $z \geq 0$.
(e) The plane in \mathbb{R}^{3} defined by the equation $z=2 x-3 y$.
(f) The set of unit vectors in \mathbb{R}^{2}.
(g) The set of polynomials of degree n.
(h) The set $\mathbb{R}_{n}[x]$ of polynomials of degree at most n.
(i) The set of polynomials of degree at most n, with only even-powers of x.
(j) The set $\operatorname{Per}_{2 \pi}(\mathbb{R})$ of piecewise continuous functions, i.e., f such that $f(x)=f(x+2 \pi)$.
(k) $\mathbb{C}:=\{a+b i \mid a, b \in \mathbb{R}\}$.
2. Let v_{1}, v_{2}, w be three linearly independent vectors in \mathbb{R}^{3}. That is, they do not all lie on the same plane. For each of the following (infinite) set of vectors, carefully sketch it in \mathbb{R}^{3}, and determine whether or not it is a vector space (i.e., a subspace of \mathbb{R}^{3}). Explain your reasoning.
(a) $\left\{C v_{1} \mid C \in \mathbb{R}\right\}$
(c) $\left\{C_{1} v_{1}+C_{2} v_{2} \mid C_{1}, C_{2} \in \mathbb{R}\right\}$
(b) $\left\{C v_{1}+w \mid C \in \mathbb{R}\right\}$
(d) $\left\{C_{1} v_{1}+C_{2} v_{2}+w \mid C_{1}, C_{2} \in \mathbb{R}\right\}$
3. Find the general solution to each of the following ODEs. Then, decide whether or not the set of solutions form a vector space. Explain your reasoning. Compare your answers to the previous problem. Recall that the general solution has the form $y(t)=y_{h}(t)+y_{p}(t)$.
(a) $y^{\prime}-2 y=0$
(c) $y^{\prime \prime}+4 y=0$
(b) $y^{\prime}-2 y=1$
(d) $y^{\prime \prime}+4 y=e^{3 t}$
4. For each of the following pairs of vectors $v_{1}=\left(x_{1}, y_{1}\right)$ and $v_{2}=\left(x_{2}, y_{2}\right)$ in (a)-(e), carry out the following steps:
(i) The lines through v_{1} and v_{2} generate a grid (of parallelograms) on the $x y$-plane. Sketch v_{1}, v_{2}, and this grid.
(ii) Find the area of one of the parallelgrams by computing the determinant of the $\operatorname{matrix}\left[\begin{array}{ll}x_{1} & x_{2} \\ y_{1} & y_{2}\end{array}\right]$. Is this matrix invertible?
(iii) Determine whether $\left\{v_{1}, v_{2}\right\}$ is a basis of \mathbb{R}^{2}.
(a) $v_{1}=(1,0), v_{2}=(0,1)$
(d) $v_{1}=(1,1), v_{2}=(1,2)$
(b) $v_{1}=(2,0), v_{2}=(0,2)$
(e) $v_{1}=(1,2), v_{2}=(1,1)$
(c) $v_{1}=\left(\frac{1}{2}, \frac{1}{2}\right), v_{2}=\left(\frac{1}{2},-\frac{1}{2}\right)$
(f) $v_{1}=(2,-1), v_{2}=(-4,2)$

Summarize your conclusions in a sentence or two.
5. For each of the following triples of vectors $v_{1}=\left(x_{1}, y_{1}, z_{1}\right), v_{2}=\left(x_{2}, y_{2}, z_{2}\right)$, and $v_{3}=$ $\left(x_{3}, y_{3}, z_{3}\right)$, carry out the following steps:
(i) Sketch v_{1}, v_{2}, and v_{3} in \mathbb{R}^{3}.
(ii) Use a computer to calculate the determinant of $\left[\begin{array}{lll}x_{1} & x_{2} & x_{3} \\ y_{1} & y_{2} & y_{3} \\ z_{1} & z_{2} & z_{3}\end{array}\right]$. Is it invertible?
(iii) The lines through v_{1}, v_{2}, and v_{3} generate a tessellation (of parallelepipeds) in \mathbb{R}^{3}. What do you think the volume of each parallelepiped is?
(iv) Describe in words (e.g., line, plane, all of \mathbb{R}^{3}) the subspace $\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\}$. Is $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a basis of \mathbb{R}^{3} ?
(a) $v_{1}=(1,0,0), v_{2}=(0,1,0), v_{3}=(0,0,1)$
(b) $v_{1}=(2,0,0), v_{2}=(0,2,0), v_{3}=(0,0,2)$
(c) $v_{1}=(1,0,0), v_{2}=(0,1,1), v_{3}=(3,1,1)$
(d) $v_{1}=(1,0,0), v_{2}=(0,2,-1), v_{3}=(1,1,1)$

Summarize your conclusions in a sentence or two.
6. For each of the following, a vector space V is given, along with a finite set $S \subset V$. Denote the subspace of V spanned by S as $\operatorname{Span}(S)$. Find an explicit basis for $\operatorname{Span}(S)$ and compute its dimension.
(a) $V=\mathbb{R}^{3}, S=\{(1,0,0),(0,1,1),(1,1,1),(3,1,1)\}$.
(b) $V=\mathbb{R}^{2}, S=\left\{(1,0),(0,1),\left(\frac{1}{2}, \frac{1}{2}\right),\left(\frac{1}{2},-\frac{1}{2}\right)\right\}$.
(c) $V=\mathcal{C}^{\infty}(\mathbb{R}), S=\left\{e^{3 x}, e^{-3 x}, \cosh 3 x, \sinh 3 x\right\}$.

