Topics: Complex Fourier series, Fourier transforms, and Parseval's theorem

1. Consider the function $f(x)=L-x$ defined on the interval $[-L, L]$ and extended to be $2 L$-periodic.
(a) Sketch $f(x)$ on the interval $[-7 L, 7 L]$.
(b) Compute the complex Fourier series of $f(x)$.
(c) Find the real Fourier series of $f(x)$. [Hint: Use $a_{n}=c_{n}+c_{-n}$, and $b_{n}=i\left(c_{n}-c_{-n}\right)$.]
(d) Sketch the Fourier series of $f(x)$. [It will be the same as the answer to Part (a) except at the points of discontinuity.]
2. Consider the 2π-periodic function defined on $[-\pi, \pi]$ by

$$
f(t)=\left\{\begin{array}{cc}
0 & -\pi \leq t<0 \\
t & 0 \leq t \leq \pi
\end{array}\right.
$$

(a) Sketch the graph of $f(t)$ on $[-7 \pi, 7 \pi]$.
(b) Compute the complex Fourier series of $f(t)$.
(c) Sketch the graph of the resulting Fourier series. [It will be the same as the answer to Part (a) except at the points of discontinuity.]
(d) Solve the differential equation $x^{\prime \prime}(t)+\omega^{2} x(t)=f(t)$. Look for a particular solution of the form

$$
x_{p}(t)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n t}
$$

3. Find the Fourier transform of the function $f(x)= \begin{cases}e^{-a x} & x>0 \\ 0 & x \leq 0\end{cases}$
4. Consider the function defined by

$$
f(x)=x^{2} \quad \text { for }-\pi<x \leq \pi
$$

and extended to be periodic of period $T=2 \pi$.
(a) Find the complex form Fourier series of $f(x)$. Feel free to use a computer to find the indefinite integral $\int x^{2} e^{-i n x} d x$.
(b) Find the real form of the Fourier series.
(c) Use Part (b), along with the real version of Parseval's identity to compute $\sum_{n=1}^{\infty} \frac{1}{n^{4}}$.
5. Consider the 2π-periodic function f defined on $[-\pi, \pi]$ by $f(x)=|x|$.
(a) What is $f(\pi)$?
(b) Compute the Fourier series of f.
(c) Plug $x=\pi$ into the Fourier series and use this to compute $\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{2}}$.
6. Consider a complex Fourier series

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n \pi x / L}
$$

Prove the complex version of Parseval's identity, which says that

$$
\frac{1}{2 L} \int_{-L}^{L}|f(x)|^{2} d x=\sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{2}
$$

Observe that this is in a sense an infinite-dimensional version of the Pythagorean theorem, because

$$
\|f\|^{2}:=\langle f, f\rangle:=\frac{1}{2 L} \int_{-L}^{L}|f(x)|^{2} d x=\sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{2}:=\sum_{n=-\infty}^{\infty}\left|\left\langle f, e^{i n \pi x / L}\right\rangle\right|^{2} .
$$

