Topics: Self-adjoint operators and Sturm-Liouville theory

For consistency, we will say that a Sturm-Liouville equation is a second-order differential equation in the following self-adjoint form:

$$
\begin{equation*}
-\frac{d}{d x}\left(p(x) y^{\prime}\right)+q(x) y=\lambda w(x) y \tag{1}
\end{equation*}
$$

where $p(x)>0$ and $w(x)>0$ is called the weight, or density function. If we divide through by $w(x)$, we can write this equation as $L y=\lambda y$, where L is a self-adjoint linear operator. The possible values of λ are the eigenvalues, and solutions are the eigenfunctions.

1. Write the following differential equations in self-adjoint form. That is, put them in the above form, and find $p(x), q(x)$, and the weight $w(x)$. Also, write out the corresponding linear operator L.
(a) Airy's equation: $y^{\prime \prime}+(\lambda-x) y=0$
(b) Laguerre's equation: $x y^{\prime \prime}+(1-x) y^{\prime}+\lambda y=0$
(c) An arbitrary linear equation: $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=\lambda R(x) y$. [Hint: Multiply through by an integrating factor, $e^{\int P(x) d x}$.]
2. In this problem, we will find all solutions to the Sturm-Liouville problem

$$
-y^{\prime \prime}=\lambda y, \quad y^{\prime}(0)=y(L)=0
$$

(a) First, suppose that $\lambda=0$. That is, solve $y^{\prime \prime}=0, y^{\prime}(0)=y(L)=0$.
(b) Next, suppose $\lambda=-\omega^{2} \leq 0$. That is, solve the boundary value problem $y^{\prime \prime}=\omega^{2} y$, $y^{\prime}(0)=y(L)=0$. [Hint: When the domain is finite, e.g., $[0, L]$, it is usually more convenient to use cosh and sinh instead of exponentials.]
(c) Finally, suppose $\lambda=\omega^{2}>0$. That is, solve $y^{\prime \prime}=-\omega^{2} y, y^{\prime}(0)=y(L)=0$.
(d) Summarize the results from Parts (a)-(c) in terms of the eigenvalues and corresponding eigenfunctions of a particular linear differential operator L. What is L ?
(e) Sketch the first four eigenfunctions on $[0, L]$.
3. By the main theorem of Sturm-Liouville theory, if we define an inner product as

$$
\begin{equation*}
\langle f, g\rangle=\int_{a}^{b} f(x) \overline{g(x)} w(x) d x \tag{2}
\end{equation*}
$$

then the eigenfunctions $\left\{y_{n}(x)\right\}$ form an orthogonal basis (Note: not necessarily orthonormal!) for the space of functions, integrable on $[a, b]$ with $\langle f, f\rangle<\infty$ that satisfy the boundary condtions. This means that for any $f \in \mathrm{~L}^{2}([a, b], w)$ with the same boundary conditions, we can write

$$
f(x)=\sum_{n=1}^{\infty} c_{n} y_{n}(x) .
$$

(a) Consider the Sturm-Liouville problem from Part (c) of the previous problem:

$$
-y^{\prime \prime}=\lambda y, \quad y^{\prime}(0)=0, \quad y(L)=0
$$

What is $w(x)$?
(b) The function $f(x)=x^{2}-L^{2}$ is clearly continuous and satisfies $f^{\prime}(0)=f(L)=0$. Compute the norm $\|f\|:=\langle f, f\rangle^{1 / 2}$ of f.
(c) Since the eigenfunctions form a basis for the subspace of $\mathrm{L}^{2}([0, L] ; w)$ that satisfy the above boundary conditions, we can write

$$
x^{2}-L^{2}=\sum_{n=1}^{\infty} c_{n} y_{n}(x), \quad 0 \leq x \leq L
$$

Write down a formula for the c_{n} 's. Leave your answer in terms of an integral - no need to actually compute it! [Hint: Don't forget that $y_{n}(x)$ isn't necessarily of unit length!]
4. Consider the following Sturm-Liouville problem:

$$
-y^{\prime \prime}-y^{\prime}=\lambda y, \quad y(0)=0 \quad y(2)=0
$$

(a) Find the eigenvalues and eigenfunctions. [Hint: You will encounter a discriminant of $D=1-4 \lambda$. As before, there will be three cases: $D=0, D>0$, and $D<0$.]
(b) Write this differential equation in standard form, as in Eq. (1). [Hint: First, multiply through by an integrating factor, e^{x}.]
(c) Write a formula for $\left\langle y_{n}, y_{m}\right\rangle$ in terms of an integral. What is this integral equal to when $n \neq m$?
5. Consider the following Sturm-Liouville equation on $[-1,1]$, called Legendre's differential equation:

$$
\begin{equation*}
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\lambda y=0 \tag{3}
\end{equation*}
$$

In this problem, you will find the eigenvalue and eigenfunctions, which have already come up several times in this class in different settings.
(a) Write Legendre's equation into self-adjoint form, as in Equation 1. That is, find $p(x), q(x)$, and $w(x)$, and the self-adjoint operator L. This is called a singular Sturm-Liouville problem on the inteveral $[a, b]=[-1,1]$ because the function $p(x)$ satisfies $p(-1)=p(1)=0$, and so boundary conditions on $y(x)$ are not needed.
(b) Assume that there is a power series solution of the form $\sum_{n=0}^{\infty} a_{n} x^{n}$. Plug this back into Eq. (3) and find the recurrence relation for the coefficients.
(c) Recall from HW 5 that a generalized power series solution will have radius of convergence $R=1$, i.e., it will be defined on the open interval $(-1,1)$, but not on its endpoints, $a=-1$ or $b=1$. However, if we have a polynomial solution (that is, only finitely many non-zero terms, which happens when $a_{n+2}=0$ for some n), then this will certainly be defined on all of $[-1,1]$. What values of λ lead to a polynomial solution? (These are the eigenvalues of L.)
(d) The eigenfunction for eigenvalue λ_{k} is a polynomial $P_{k}(x)$ called the Legendre polynomial of degree k. (These arose on HW 2 and HW 5.) By Sturm-Liouville theory, they form an orthogonal basis of $\mathrm{L}^{2}([-1,1])$, meaning that

$$
\left\langle P_{n}, P_{m}\right\rangle:=\int_{-1}^{1} P_{n}(x) P_{m}(x) d x=0, \quad n \neq m
$$

Use the recurrence relation to write out the first five Legendre polynomials, $P_{k}(x)$, for $k=0, \ldots, 4$. Normalize each one so they form an orthonormal set.
(e) Write the polynomial $f(x)=3 x^{3}-2 x^{2}+4$ using the first four Legendre polynomials. That is, find C_{0}, C_{1}, C_{2}, and C_{3} such that

$$
3 x^{3}-2 x^{2}+4=C_{0} P_{0}(x)+C_{1} P_{1}(x)+C_{2} P_{2}(x)+C_{3} P_{3}(x) .
$$

Hint: This is very similar to a problem you did on HW 2!

